

IMS Presence Server: Traffic Analysis & Performance Modelling

Caixia Chi chic@alcatel-lucent.com Ruibing Hao rbhao@yahoo.com

Dong Wang wangd01@gmail.com Z. Cao

caozhenzhen1983@gmail.com

Presented

By

Zhenhua Liu

Computer Science & Technology, Tsinghua University, China

- Background Introduction
- Presence Server Traffic Load Analysis
- Traffic Process Modelling of a Presence Server
 - An Accurate Model
 - A Simplified Model
- Conclusion

- Background Introduction
- Presence Server Traffic Load Analysis
- Traffic Process Modelling of a Presence Server
 - An Accurate Model
 - A Simplified Model
- Conclusion

Presence Service Introduction

- Presence is a service that allows a user to be informed about the reachability, availability, and willingness of communication of another user.
- Able to indicate users' status: online or not; Idle or busy; communication means and capabilities: SMS, MMS, 3G,2G Phone....
- A key enabler for many popular applications: push-to-talk (PTT), instant messaging (IM).
- 3G IP Multimedia Subsystem (IMS) already has presence service well supported in its architecture.

SIP Presence Architecture

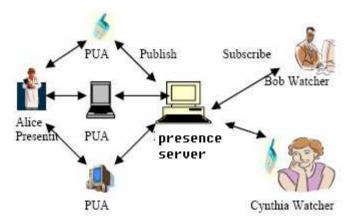
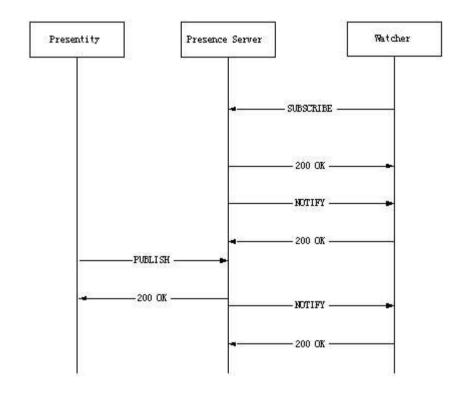



Figure 1-SIP Presence Architecture

- •Alice is the publisher whose presence information is published to a presence server by PUA.
- •PUA is the presence user agent of a user.
- •Presence Agent is a presence server that is responsible for managing presence information.
- •Bob/Cynthia are watchers who subscribes to information from PS on Alice's presentity.

SIP Presence Service Message Flow

- Background Introduction
- Presence Server Traffic Load Analysis
- Traffic Process Modelling of a Presence Server
 - An Accurate Model
 - A Simplified Model
- Conclusion

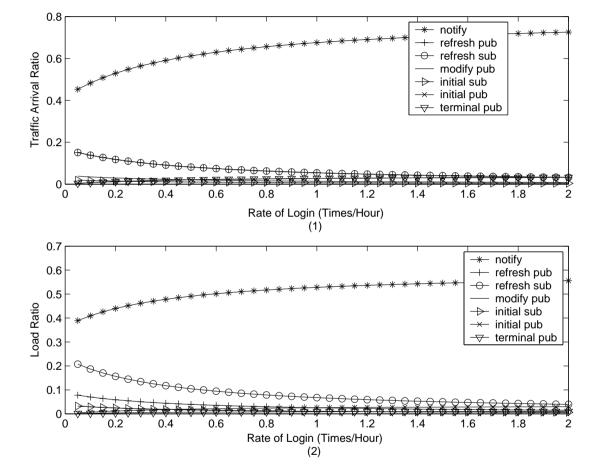
User Behavior & Traffic Characterization

Login and Logout

- A user's login generates an initial PUBLISH message to the PS
- Refresh PUBLISH messages are generated periodically
- Terminating PUBLISH message is sent to the PS upon the user's logout

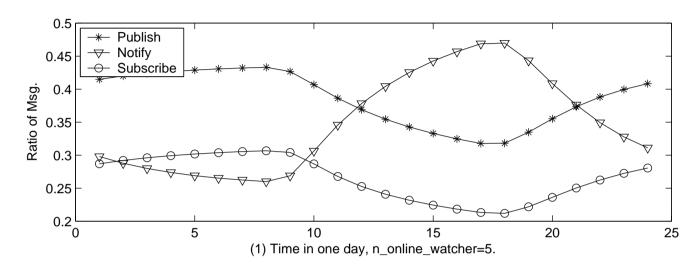
Presence Subscription

- Subscription of a user's presentity results in an initial SUBSCRIBE message being sent to the PS,
- Refresh SUBSCRIBE messages will be sent to the PS periodically
- Terminating SUBSCRIBE message un-subscribes the other user's presentity.

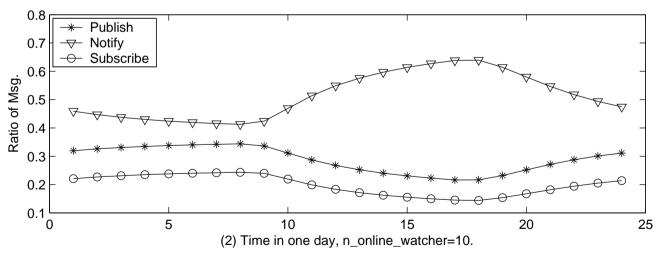

Presence Status Updates

• Change of a user's status results in a modifying PUBLISH message,

Traffic Types


- Traffic to a PS is divided into eight types:
 - initial/refresh/modifying/terminal publish
 - initial/refresh/terminal subscribe
 - notify
- Process Time for each Traffic type is Different (a reference implementation)

Ratio of Traffic Load vs. User Login Rate , *online watcher* = 10



- Traffic Load increases with login frequence increases.
- Notify messages is the largest part of the traffic load.
- Refresh PUBLISH
 and refresh
 Subscribe has the
 same traffic arrival
 rate, but Refresh
 Subscribe has more
 heavier load.

Messages Ratio Distribution During the Time of a Day.

- •Traffic to a PS varies during the time of a day
- Notify messages are the largest part of all the traffic load when online watcher number greater than 10

Presence Server Traffic Characterization

- NOTIFY messages have great impact on traffic load to a PS
- Traffic rate to a PS varies greatly with the time of a day.
- With each message to/from PS will be relayed by IMS Core network, NOTIFY message process will be critical for whole IMS network.
- NOTIFY message process mechanism in a PS is studied in the following.

- Background Introduction
- Presence Server Traffic Load Analysis
- Traffic Process Modelling of a Presence Server
 - An Accurate Model
 - A Simplified Model
- Conclusion

Publish and Notify Queues in a PS

- •A PUBLISH message arrives a PS, n_w NOTIFY messages are generated.
- •2000K messages are sent out as soon as possible to prevent retransmission
- •NOTIFY messages are buffered in a queue and controlled by a scheduling mechanism.

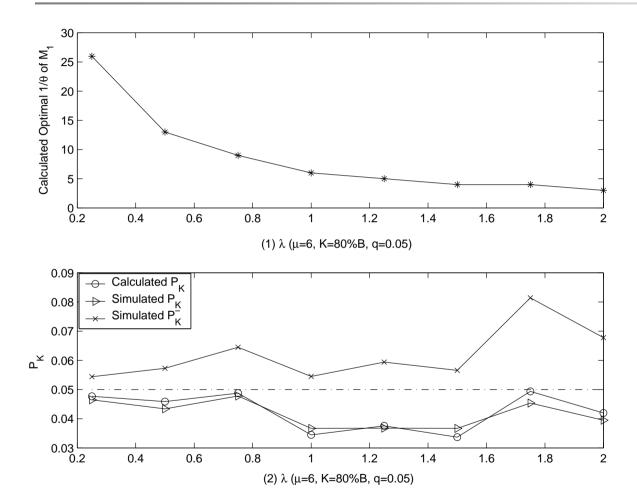
Note: nw is the number of online watchers

•Notify messages queue is modelled as a Queueing System with Controlled Vacation and Batch Poisson Arrival

State Transition Graph of NOTIFY Queue

•Based on the state transition graph, balance equations can be used to get probability of system states and the relationship between vacation time $(T = \frac{1}{\theta})$ and state probability.

Optimization Problem from the Analysis


$$\min \theta$$
 (34)

s.t.

$$P_K \le q$$
 (35)

- Minimize the busy time of the Presence Server such that
- ullet The probability of message queue length greater than K should be less than q,

Optimal Notify Timers

- •A higher arrival rate needs a shorter vacation time.
- •Timer is not very sensitive to the traffic arrival rate
- •Traffic load can be divided into several levels and each level is associated with a control timer value.
- •Optimal timer value, the loss probability of NOTIFY queue can vary for difference traffic load as indicated in Fig. 10(2), but they all satisfies the constraint.

- Background Introduction
- Presence Server Traffic Load Analysis
- Traffic Process Modelling of a Presence Server
 - An Accurate Model
 - A Simplified Model
- Conclusion

A Queue System with Controlled Vacation and Poisson Arrival (A Simplified Model)

$$\lambda p_{0,1} = \mu p_{1,0}$$

$$(\lambda + \mu) p_{1,0} = \mu p_{2,0} + \theta p_{1,1}$$

$$(\lambda + \mu) p_{j,0} = \lambda p_{j-1,0} + \mu p_{j+1,0} + \theta p_{j,1},$$

$$j = 2, \dots, B - 1.$$

$$\mu p_{B,0} = \lambda p_{B-1,0} + \theta p_{B,1}$$

$$(\theta + \lambda) p_{j,1} = \lambda p_{j-1,1}, j = 1, \dots, B - 1.$$

$$\theta p_{B,1} = \lambda p_{B-1,1}$$

$$\sum_{j=1}^{B} p_{j,0} + \sum_{j=0}^{B} p_{j,1} = 1$$

$$p_{B,1} = \frac{\mu - \lambda}{\mu (1 + \frac{\theta}{\lambda})^B + \mu \times J - \lambda \times (1 + \frac{\theta}{\lambda})^B - I\lambda}$$

$$I = \frac{\theta}{\lambda} \left(1 + \frac{\theta}{\lambda} \right)^{B-1} \frac{\lambda \left(1 - (\frac{\lambda}{\mu})^B \right)}{\mu - \lambda}$$

$$- \frac{\theta}{\mu} \frac{\theta}{\lambda} \sum_{j=0}^{B-2} \left(\frac{\lambda}{\mu} \right)^j \sum_{k=1}^{B-j-1} \left(1 + \frac{\theta}{\lambda} \right)^{B-k-1}$$

$$J = \frac{\lambda (B-1)}{\mu} \frac{\theta}{\lambda} \left(1 + \frac{\theta}{\lambda} \right)^{B-1}$$

$$- \frac{\theta}{\mu} \sum_{j=1}^{B-1} (B-j) \frac{\theta}{\lambda} \left(1 + \frac{\theta}{\lambda} \right)^{B-j-1}$$

$$p_{0,1} = \frac{\theta}{\lambda} \left(1 + \frac{\theta}{\lambda} \right)^{B-1} p_{B,1}$$

$$p_{j,1} = \frac{\theta}{\lambda} \left(1 + \frac{\theta}{\lambda} \right)^{B-1-j} p_{B,1}$$

$$j = 1, \dots, B - 1.$$

$$p_{1,0} = \frac{\lambda}{\mu} p_{0,1}$$

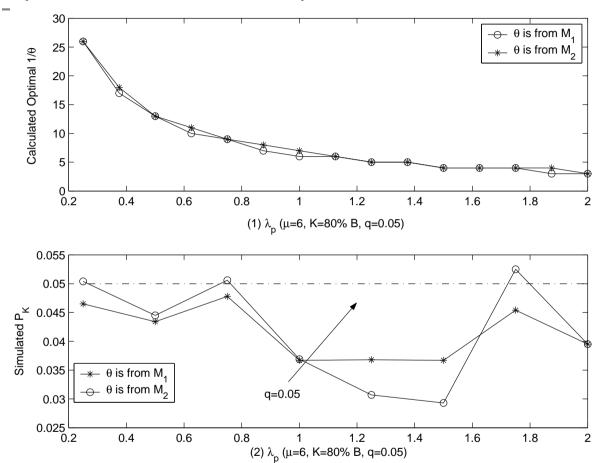
$$p_{j,0} = \frac{\lambda}{\mu} p_{j-1,0} + \frac{\lambda}{\mu} p_{0,1} - \frac{\theta}{\mu} \sum_{k=1}^{j-1} p_{k,1},$$

$$j = 2, \dots, B.$$

 $\min \theta$

s.t.

$$P_K \leq q$$


$$P_K = \sum_{j=K+1}^{B} (p_{j,1} + p_{j,0})$$

Buffer Control Optimization Algorithm 1:

begin

- 1. Given PUBLISH traffic arrival rate λ_p , number of online watchers n_w , QoS parameter K, q and timer interval I = [L, U], i = 1, maxI = L;
- 2. for i=L:U /* loop from L to U */ $\theta = 1/i$, Solve equations array M_1 to get $p_{j,0}, p_{j,1}, j = 0, \cdots, B$ Get P_K from equation $P_K = \sum_{j=K+1}^B (p_{j,1} + p_{j,0})$ if $P_K \leq q$ and i > maxI, maxI = i; end
- 3. $\theta = \frac{1}{maxI}$, Return **end**

Experimental Result for Simplified Model

•The simplified model can satisfy the constraint at most of the time

Conclusion

- NOTIFY messages account for the largest portion of traffic load to a PS and their processing overhead has great impact on the quality of service of the PS.
- Queuing system with Controlled Vacation and Batch Poisson Arrival can be used to model Notify message queue.
- Simplified queuing system with Controlled Vacation and Poisson Arrival can be used to optimize vacation timer.
- Further work is needed to apply the analysis to the problems such as network sizing, traffic admission control.

For any questions, please contact

Caixia Chi <u>chic@alcatel-lucent.com</u>

Ruibing Hao <u>rbhao@yahoo.com</u>

Dong Wang <u>wangd01@gmail.com</u>

Z. Cao <u>caozhenzhen1983@gmail.com</u>

Thank you!