
TCAM Razor: A Systematic Approach Towards

Minimizing Packet Classifiers in TCAMs

Chad R. Meiners Alex X. Liu Eric Tomg
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824, U.S.A.

{meinersc, alexliu, tomg} @cse.msu.edu

Abstract- Packet classification is the core mechanism that
enables many networking services on the Internet such as firewall
packet filtering and traffic accounting. Using Ternary Content
Addressable Memories (TCAMs) to perform high-speed packet
classification has become the de facto standard in industry.
TCAMs classify packets in constant time by comparing a packet
with all classification rules of ternary encoding in parallel.

Despite their high speed, TCAMs suffer from the well-known
range expansion problem. As packet classification rules usually
have fields specified as ranges, converting such rules to TCAM-
compatible rules may result in an explosive increase in the
number of rules. This is not a problem if TCAMs have large
capacities. Unfortunately, TCAMs have very limited capacity,
and more rules means more power consumption and more heat
generation for TCAMs. Even worse, the number of rules in
packet classifiers have been increasing rapidly with the growing
number of services deployed on the internet.

To address the range expansion problem of TCAMs, we
consider the following problem: given a packet classifier, how
can we generate another semantically equivalent packet classifier
that requires the least number of TCAM entries? In this paper,
we propose a systematic approach, the TCAM Razor, that is
effective, efficient, and practical. In terms of effectiveness, our
TCAM Razor prototype achieves a total compression ratio of
3.9%, which is significantly better than the previously published
best result of 54%. In terms of efficiency, our TCAM Razor
prototype runs in seconds, even for large packet classifiers.
Finally, in terms of practicality, our TCAM Razor approach
can be easily deployed as it does not require any modification
to existing packet classification systems, unlike many previous
range expansion solutions.

I. INTRODUCTION

Packet classification, which has been widely deployed on
the Internet, is the core mechanism that enables routers to
perform many networking services such as firewall packet
filtering, virtual private networks (VPNs), network address
translation (NAT), quality of service (QoS), load balancing,
traffic accounting and monitoring, differentiated services (Diff-
serv), etc. As more services are deployed on the Internet,
packet classification grows in demand and importance.

The function of a packet classification system is to map each
packet to a decision (i.e., action) according to a sequence (i.e.,
ordered list) of rules, which is called a packet classifier. Each
rule in a packet classifier has a predicate over some packet
header fields and a decision to be performed upon the packets
that match the predicate. To resolve possible conflicts among

rules in a classifier, the decision for each packet is the decision
of the first (i.e., highest priority) rule that the packet matches.
Table I shows an example packet classifier of two rules. The
format of these rules is based upon the format used in Access
Control Lists on Cisco routers.

A. Motivation

There are two types of packet classification schemes:
software-based and hardware-based. Many software-based
packet classification algorithms and techniques have been
proposed in the past decade (e.g., [4], [5], [8], [10], [13],
[19], [20], [22], [26], [27]). Based on complexity bounds from
computational geometry [18], for packet classification with
n rules and d > 3 fields, the "best" software-based packet
classification algorithms use either 0(nrd) space and 0(log n)
time or 0(n) space and 0(logd-1 n) time. Many software-
based solutions are either too slow (such as linear search) or
too memory intensive (such as RFC [10]). Decision-tree based
packet classification algorithms, which were pioneered by Woo
[27] and Gupta and McKeown [11], seem to achieve better
time-space tradeoffs. However, they may not work as well in
the future as they have exploited statistical characteristics of
packets classifiers to achieve the above time-space tradeoffs,
and it has been observed that these statistical characteristics
are changing [14].
Due to the inherent limitations of software-based packet

classification algorithms, more and more packet classifica-
tion systems are hardware-based; specifically, most packet
classification systems now use Ternary Content Addressable
Memories (TCAMs). A TCAM is a memory chip where each
entry can store a packet classification rule that is encoded
in ternary format. Given a packet, the TCAM hardware can
compare the packet with all stored rules in parallel and then
return the decision of the first rule that the packet matches.
Thus, it takes 0(1) time to find the decision for any given
packet. Because of their high speed, TCAMs have become the
de facto industrial standard for high speed packet classification
[1], [14]. In 2003, most packet classification devices shipped
were TCAM-based [2]. More than 6 million TCAM devices
were deployed worldwide in 2004 [2].

Despite their high speed, TCAMs have their own limitations
with respect to packet classification.

1-4244-1588-8/07/$25.00 C2007 IEEE 266

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

Rule Source IP Destination IP Source Port Destination Port Protocol Action
ri 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
r2 e e e e e discard

TABLE I

AN EXAMPLE PACKET CLASSIFIER

Rule Source IP Destination IP Source Port Destination Port Protocol Action
rl 1.2.3.0/24 192.168.0.1 0 * * discard
r2 1.2.3.0/24 192.168.0.1 65535 * * discard
r3 1.2.3.0/24 192.168.0.1 * 0 * discard
r4 1.2.3.0/24 192.168.0.1 * 65535 * discard
r5 1.2.3.0/24 192.168.0.1 [0,65535] [0,65535] TCP accept
r6 e e e e e discard

TABLE II

TCAM RAZOR OUTPUT FOR THE EXAMPLE PACKET CLASSIFIER IN FIGURE I

a) Range expansion: TCAMs can only store rules that
are encoded in ternary format. In a typical packet classification
rule, source IP address, destination IP address, and protocol
type are specified in prefix format, which can be directly
stored in TCAMs, but source and destination port numbers
are specified in ranges (i.e., integer intervals), which need to
be converted to one or more prefixes before being stored in
TCAMs. This can lead to a significant increase in the number
of TCAM entries needed to encode a rule. For example, 30
prefixes are needed to represent the single range [1, 65534],
so 30 x 30 = 900 TCAM entries are required to represent the
single rule r1 in Table I.

b) Low capacity: TCAMs have limited capacity. The
largest TCAM chip available on the market has 18Mb while
2Mb and 1Mb chips are most popular [2]. Given that each
TCAM entry has 144 bits and a packet classification rule may
have a worst expansion factor of 900, it is possible that an
18Mb TCAM chip cannot store all the required entries for a
modest packet classifier of only 139 rules. While the worst
case may not happen in reality, this is certainly an alarming
issue. Furthermore, TCAM capacity is not expected to increase
dramatically in the near future due to other limitations that we
will discuss next.

c) High power consumption and heat generation: TCAM
chips consume large amounts of power and generate large
amounts of heat. For example, a 1Mb TCAM chip consumes
15-30 watts of power. Power consumption together with the
consequent heat generation is a serious problem for core
routers and other networking devices.

d) Large board space occupation: TCAMs occupy much
more board space than SRAMs. For networking devices such
as routers, area efficiency of the circuit board is a critical issue.

e) High hardware cost: TCAMs are expensive. For ex-
ample, a 1Mb TCAM chip costs about 200 - 250 U.S. dollars.
TCAM cost is a significant fraction of router cost.

B. The Problem
In this paper, we consider the following TCAM Minimiza-

tion Problem: given a packet classifier, how can we generate

another semantically equivalent packet classifier that requires
the least number of TCAM entries? Two packet classifiers
are (semantically) equivalent if and only if they have the
same decision for every packet. For example, the two packets
classifiers in Tables I and II are equivalent; however, the one
in Table I requires 900 TCAM entries, and the one in Table
II requires only 6 TCAM entries.

Solving this problem helps to address the limitations of
TCAMs. As we reduce the number of TCAM entries required,
we can use smaller TCAMs, which results in less board space
and lower hardware cost. Furthermore, reducing the number
of rules in a TCAM directly reduces power consumption and
heat generation because the energy consumed by a TCAM
grows linearly with the number of ternary rules it stores [28].

C. Our Solution: TCAM Razor
While the optimal solution to the above problem is conceiv-

ably NP-hard, in this paper, we propose a practical algorithmic
solution using three techniques: decision diagrams, dynamic
programming, and redundancy removal. Our solution consists
of the following four basic steps. First, convert a given packet
classifier to a reduced decision diagram, which is the canonical
representation of the semantics of the given packet classifier.
Second, for every nonterminal node in the decision diagram,
minimize the number of prefixes associated with its outgoing
edges using dynamic programming. Third, generate rules from
the decision diagram. Last, remove redundant rules. As an
example, running our algorithms on the packet classifier in
Table I will yield the one in Table II.

Our solution is effective, efficient, and practical. In terms of
effectiveness, our approach achieves a total compression ratio
of 3.9% on real-life packet classifiers, which is significantly
better than the previously published best result of 54% [6].
In terms of efficiency, our approach runs in seconds, even
for large packet classifiers. Finally, in terms of practicality,
our approach can be easily deployed as it does not require
any modification of existing packet classification systems. In
comparison, a number of previous solutions require hardware
and architecture modifications to existing packet classification

267

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

systems, making their adoption by networking manufacturers
and ISPs much less likely.
We name our solution "TCAM Razor" following the prin-

ciple of Occam's razor: "Of two equivalent theories or ex-
planations, all other things being equal, the simpler one is to
be preferred." In our context, of all packet classifiers that are
equivalent, the one with the least number of TCAM entries is
preferred.

The rest of this paper proceeds as follows. We start by
reviewing related work in Section II. In Section III, we
formally define the TCAM minimization problem and related
terms. In Section IV, we discuss the weighted one-dimensional
TCAM minimization problem. In Section V, we give a solution
to the multi-dimensional TCAM minimization problem. In
Section VI, we show the experimental results on both real-life
and synthetic packet classifiers. Finally, we give concluding
remarks in Section VII.

II. RELATED WORK

Many software solutions have been proposed for finding
the decision of the first rule that a packet matches in a given
packet classifier (e.g., [4], [5], [8], [10], [13], [19], [20], [22],
[26], [27]). A comprehensive survey of this work is given in
[24].

Recently, hardware packet classification systems based on
TCAMs have been widely deployed due to their 0(1) clas-
sification time. This has led to a significant amount of
work that explores ways to cope with the well-known range
expansion problem. These solutions fall into three broad
categories: (1) TCAM modification, which requires changing
TCAM hardware circuits, (2) range encoding, which does not
require changing TCAM hardware circuits, but does require
preprocessing for every packet, and (3) classifier minimization,
which does not require changing TCAM hardware circuits nor
preprocessing for any packet.
TCAM Modification: The basic idea is to modify TCAM

circuits for packet classification purposes. For example, Spitz-
nagel et al. proposed adding comparators at each entry level to
better accommodate range matching [21]. This is an important
research direction. However, any solutions from this research
line will not be deployed for many years due to issues
of cost and development [14]. Furthermore, changing the
ternary nature of TCAMs makes such TCAMs less generally
applicable to applications other than packet classification.
Range Encoding: The basic idea is to re-encode ranges that

appear in a packet classifier and then store the re-encoded
rules in the TCAM. When a packet comes, the packet needs
to be preprocessed according to the re-encoding scheme such
that the packet, after preprocessing, can be used as a search
key for the TCAM. Several range encoding schemes have
been proposed [14], [17], [25]. While the TCAM circuit does
not need to be modified to implement range encoding, the
system hardware does need to be reconfigured to allow for
preprocessing of packets, and the delay caused by packet
preprocessing could be problematic.

Classifier Minimization: The basic idea is to convert a given
packet classifier to another semantically equivalent packet
classifier that requires fewer TCAM entries. These solutions
are the most likely to be deployed by networking vendors and
ISPs because they require no changes to TCAM hardware or
existing packet classification systems and incur no preprocess-
ing overhead for packets. Our work, along with [3], [6], [7],
[16], [23], falls into this category.

Three papers focus on one-dimensional and two dimen-
sional packet classifiers. Draves et al. proposed an optimal
solution for one-dimensional packet classifiers in the context
of minimizing routing tables in [7]. Subsequently, in the same
context of minimizing routing tables, Suri et al. proposed an
optimal dynamic programming solution for one-dimensional
packet classifiers. They also observed that a generalization of
the dynamic program was optimal for two-dimensional packet
classifiers in which two rules either are non-overlapping or
one contains the other geometrically [23]. Suri et al. noted
that their dynamic program would not be optimal for packet
classifiers with more than 2 dimensions. In our studies, we
have extended and implemented Suri et al.'s algorithm to
minimize 5-dimensional packet classifiers. Unfortunately, the
extended algorithm is prohibitively slow even for a packet
classifier with just a few rules. Recently, Applegate et al.
proposed an optimal solution for packet classifiers with two
dimensions in which each rule must have one field specified
as the whole domain of the field and there are only 2 decisions
[3].
Only two papers have considered minimizing packet clas-

sifiers with more than 2 dimensions. In [16], Liu and Gouda
proposed the first algorithm to remove all the redundant rules
in a packet classifier, which consequently reduces the number
of TCAM entries needed. In [6], Dong et al. observed that
both expanding and trimming ranges so that they correspond to
prefixes can result in fewer TCAM entries. Our TCAM Razor
handles these special cases and more. As we demonstrate
in Section VI, TCAM Razor significantly outperforms Liu
and Gouda's redundancy removal technique and Dong et
al.'s heuristics. For example, the total compression ratios
for TCAM Razor, redundancy removal, and Dong et al.'s
scheme are 3.9%, 35%, and 54% respectively. Furthermore,
the running time of Dong et al.'s techniques are not reported.
In comparison, TCAM Razor runs in seconds on a mediocre
desktop PC, even for large packet classifiers.

It is not surprising that TCAM Razor outperforms the
heuristics of Dong et al.. First, although TCAM Razor and
Dong et al.'s heuristics both process packet classifiers one
dimension at a time, TCAM Razor is guaranteed to achieve
optimal compression on that dimension, but Dong et al.'s
heuristics are not. Specifically, TCAM Razor handles all the
special cases that Dong et al. identify in a systematic fashion.
Second, while packet classifier semantics are highly dependent
on rule order given their first-match semantics, TCAM Razor
reduces the influence of rule order by converting the given
packet classifier to a reduced decision diagram, which is a
canonical representation of the given packet classifier. On the

268

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

other hand, Dong et al. process rules in their original order,
looking at one rule at a time for optimization possibilities.

III. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
packet classifiers, and the TCAM Minimization Problem. A
field Fi is a variable of finite length (i.e., of a finite number
of bits). The domain of field Fi of w bits, denoted D(Fi),
is [0, 2W 1]. A packet over the d fields F1,... , Fd is a d-
tuple (P1,... ,Pd) where each pi (1 < i < d) is an element
of D(F6). Packet classifiers usually check the following five
fields: source IP address, destination IP address, source port
number, destination port number, and protocol type. The length
of these packet fields are 32, 32, 16, 16, and 8 respectively. We
use E to denote the set of all packets over fields F1,... , Fd. It
follows that E is a finite set and ZY = D(Fl) x ... x D(Fd) ,

where E denotes the number of elements in set E and D(Fi)
denotes the number of elements in set D (Fi).
A rule has the form (predicate) -> (decision) . A

(predicate) defines a set of packets over the fields F1 through
Fd, and is specified as F1 C Si A ... A Fd C Sd where
each Si is a subset of D(Fi) and is specified as either a
prefix or a range. A prefix {0, }k{*}W-k with k leading
Os or Is for a packet field of length w denotes the range
[{O,jl}k{O}W-,{O,l}k{l}W-k]. For example, prefix 01**
denotes the range [0100, 0111]. A rule F1 C Si A ... A Fd C
Sd -> (decision) is a prefix rule if and only if each Si is
represented as a prefix.
When using a TCAM to implement a packet classifier, we

typically require that all rules be prefix rules. However, in
a typical packet classifier rule, some fields such as source
and destination port numbers are represented as ranges rather
than prefixes. This leads to range expansion, the process of
converting a rule that may have fields represented as ranges
into one or more prefix rules. In range expansion, each field
of a rule is first expanded separately. The goal is to find a
minimum set of prefixes such that the union of the prefixes
corresponds to the range. For example, if one 3-bit field of
a rule is the range [1, 6], a corresponding minimum set of
prefixes would be 001, 01*, 10*, 110. The worst-case range
expansion of a w -bit range results in a set containing 2w- 2
prefixes [12]. The next step is to compute the cross product
of each set of prefixes for each field, resulting in a potentially
large number of prefix rules. In Section I, the range expansion
of rule rl in Table I resulted in 30 x 30 = 900 prefix rules.
A packet (P1, , Pd) matches a predicate F1 C Si A... A

Fd C Sd and the corresponding rule if and only if the condition
P1 C S1 A ... A Pd C Sd holds. We use a to denote the set of
possible values that (decision) can be. For firewalls, typical
elements of a include accept, discard, accept with logging,
and discard with logging.
A sequence of rules (rl, .rn) is complete if and only

if for any packet p, there is at least one rule in the sequence
that p matches. To ensure that a sequence of rules is complete
and thus is a packet classifier, the predicate of the last rule is
usually specified as F1 C D(F1)A... Fdj C AD(Fd). A packet

classifier f is a sequence of rules that is complete. The size of
f, denoted IfJ, is the number of rules in f. A packet classifier
f is a prefix packet classifier if and only if every rule in f is
a prefix rule.
Two rules in a packet classifier may overlap; that is, there

exists at least one packet that matches both rules. Furthermore,
two rules in a packet classifier may conflict; that is, the two
rules not only overlap but also have different decisions. Packet
classifiers typically resolve conflicts by employing a first-
match resolution strategy where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that p
matches in f. The decision that packet classifier f makes for
packet p is denoted f (p).
We can think of a packet classifier f as defining a many-to-

one mapping function from E to a, where E denotes the set
of all possible packets and a denotes the set of all possible
decisions. Two packet classifiers fi and f2 are equivalent,
denoted f_ f2, if and only if they define the same mapping
function from E to a; that is, for any packet p C Z, we
have fi (p) = f2 (p). For any packet classifier f, we use {f}
to denote the set of packet classifiers that are equivalent to f.
Now we are ready to define the TCAM Minimization Problem.

Definition 3.1 (TCAM Minimization Problem): Given a
packet classifier fl, find a prefix packet classifier f2 C {ff}
such that for any prefix packet classifier f C {ff}, the
condition Jf21 < If holds.

IV. ONE-DIMENSIONAL TCAM MINIMIZATION

We first consider the special problem of weighted
one-dimensional TCAM minimization, whose solution is
used in the next section as a building block for multi-
dimensional TCAM minimization. Given a one-dimensional
packet classifier f of n prefix rules (rl, r2, .. rn),
where {Decision(ri), Decision(r2),... , Decision(rn)} =

{dj, d2,... , dz} and each decision di is associated with a
cost Cost(di) (for 1 < i < z), we define the cost of packet
classifier f as follows:

n

Cost(f) = Cost(Decisionr(ri))

Based upon the above definition, the problem of weighted one-
dimensional TCAM minimization is stated as follows.

Definition 4.1: (Weighted One-dimensional TCAM Min-
imization Problem) Given a one-dimensional packet classifier
fi where each decision is associated with a cost, find a prefix
packet classifier f2 C {fi } such that for any prefix packet
classifier f C {fi}, the condition Cost(f2) < Cost(f) holds.

The problem of one-dimensional TCAM minimization (with
uniform cost) has been studied in [7], [23] in the context
of compressing routing tables. In this paper, we extend the
dynamic programming solution in [23] to solve the weighted
one-dimensional TCAM minimization. There are three key
observations:

1) For any one-dimensional packet classifier f on *1',
we can always change the predicate of the last rule to

269

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

be {*}W without changing the semantics of the packet
classifier. This follows from the completeness property
of packet classifiers.

2) Consider any one-dimensional packet classifier f on
{*}W. Let f' be f appended with rule {*}W -> d, where
d can be any decision. The observation is that f _ f'.
This is because the new rule is redundant in f' since
f must be complete. A rule in a packet classifier is
redundant if and only if removing the rule from the
packet classifier does not change the semantics of the
packet classifier.

3) Any prefix {0, }k{*}w k (1 < k < w) satisfies one of
the following three mutually exclusive conditions:

a) {O, 1} {* kw- C o{*}w- 1
b) {0, l}k{*}w-k c i{*}lW1
c) {O, 1}k{*}w-k =k * w.

This property allows us to divide a problem
on {0, l}k{*}w-k into two sub-problems: one
on {0,l}kO{*}w-k- , and the other one on
{0, l}kl{}*w-k-1 . This divide-and-conquer strategy
can be applied recursively.

Based on the above three observations, we formulate an
optimal dynamic programming solution to the weighted one-
dimensional TCAM minimization problem.

Let P denote a prefix {0, l}k{*}w-k. We use P to denote
the prefix {0, l}kO{}w-k-1 , and P to denote the prefix
{O,~l}kl{*w-k-1.

Given a one-dimensional packet classifier f on {*}w, we
use fp to denote a packet classifier on P such that for any
xcC 2, fp(x) = f(x), and we use fF to denote a similar
packet classifier on P with the additional restriction that the
final decision is d.
We use C(fp) to denote the minimum cost of a packet

classifier t that is equivalent to fp, and we use C(f$) to
denote the minimum cost of a packet classifier t' that is
equivalent to fP and the decision of the last rule in t' is d.

Given a one-dimensional packet classifier f on {*}w and a
prefix P where P C {*}W, f is consistent on P if and only
if Vx, y C 2, f(x) = f(y)

Our dynamic programming solution to the weighted one-
dimensional TCAM minimization problem is based on the
following theorem. The proof of the theorem shows how
to divide a problem into sub-problems and how to combine
solutions to sub-problems into a solution to the original
problem.

Theorem 4.1: Given a one-dimensional packet classifier f
on {*}w, a prefix P where P C {*}W, the set of all possible
decisions {dl, d2, , dz } where each decision di has a cost
Wdi (1 < i < z), we have that

C(fp) minC(4f)
ii1

where each C(f d) is calculated as follows:
(1) If f is consistent on P, then

C(fd) Wf(X) if f(x) dif~ WlWf(,) + Wd, if f(x) di,

(2) If f is not consistent on P, then

C(f4d1) + C(41) Wd1 + Wdd,
| 4f Wd+Wf) di-,

C(fpd) min C(fFi) + C(fF) -Wdi,
| (w)+b(f) Wdi+l 4

C(fpd) + C(fjdZ) -Wd, + Wdi
L-i

- Wdi,

- Wdi ,

Proof: (1) The base case of the recursion is when f is
consistent on P. In this case, the minimum cost prefix packet
classifier in {ffp} is clearly (P -> f (x)), and the cost of
this packet classifier is wf(x). Furthermore, for di :t f(x), the
minimum cost prefix packet classifier in {ffp } with decision di
in the last rule is (P >- (x),P -*> di) where the second rule
is redundant. The cost of this packet classifier is Wf(x) + Wdi .

(2) If f is not consistent on P, we divide P into P and
P. The crucial observation is that an optimal solution f* to
{fp } is essentially an optimal solution fi to the sub-problem
of minimizing fp appended with an optimal solution f2 to the
sub-problem of minimizing fJT. The only interaction that can
occur between fi and f2 is if their final rules have the same
decision, in which case both final rules can be replaced with
one final rule covering all of P with the same decision. Let dx
be the decision of the last rule in fi and dy be the decision of
the last rule in f2. Then we can compose f* whose last rule
has decision di from fi and f2 based on the following cases:
(A) dx = dy = di: In this case, f can be constructed by listing
all the rules in fi except the last rule, followed by all the rules
in f2 except the last rule, and then the last rule P -> di. Thus,
Cost (f) = Cost (fl) + Cost (f2) -Wdi -

(B) dx = dy :t di: In this case, f can be constructed by listing
all the rules in fi except the last rule, followed by all the rules
in f2 except the last rule, then rule P -> dx, and finally rule
P -> di Thus, Cost (f) = Cost (fl) + Cost (f2) -Wdx + Wdi -

(C) dx 7' dy, dx = di, dy :t di: We do not need to consider
this case because C(f d) + C(4)d C(fd) + (C(4dY) +
Wd)- Wd > C(4)-+C(4d) Wdi
(D) dx :4 dy, dx :7 d, dy di: Similarly, we do not need to
consider this case.
(E) dx :4 dy, dx di, dy 7 di: Similarly, we do not need to
consider this case. i

Figure 1 shows the illustration of a one-dimensional TCAM
minimization problem, where the black bar denotes decision
"accept" and the white bar denotes decision "discard". Figure
2 illustrates how the dynamic programming solution works on
this example.

- -

F00.0 110|1nT

Fig. 1. An example one-dimensional TCAM minimization problem

270

V

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

1001100 1111101 11110 EV

- II - II

loo I|01 I|00 I01 I I|10 ill |

- -

I|00|I01 I|10|I11] I 00 I01 10 I11|

Fig. 2. Illustration of dynamic programming

V. MULTI-DIMENSIONAL TCAM MINIMIZATION

In this section, we present TCAM Razor, our algorithm for
minimizing multi-dimensional prefix packet classifiers. A key
idea behind TCAM Razor is processing one dimension at a
time using the weighted one-dimensional TCAM minimization
algorithm in Section IV to greedily identify a local minimum
for the current dimension. Although TCAM Razor is not
guaranteed to achieve a global minimum across all dimensions,
it does significantly reduce the number of prefix rules in real-
life packet classifiers. Due to space limitations, we omit the
description of some optimizations that improve TCAM Razor's
run-time performance.

A. Conversion to Firewall Decision Diagrams

To facilitate processing a packet classifier one dimension
at a time, we first convert a given packet classifier to an
equivalent Firewall Decision Diagram (FDD) [9].
A Firewall Decision Diagram (FDD) with a decision set DS

and over fields F1,... , Fd is an acyclic and directed graph that
has the following five properties:

1) There is exactly one node that has no incoming edges.
This node is called the root. The nodes that have no
outgoing edges are called terminal nodes.

2) Each node v has a label, denoted F(v), such that

F(v) C { {F1, ,Fd} if v is a nonterminal node,
DS if v is a terminal node.

3) Each edge e:u - v is labeled with a nonempty set of
integers, denoted l(e), where 1(e) is a subset of the
domain of u's label (i.e., 1(e) C D(F(u))).

4) A directed path from the root to a terminal node is called
a decision path. No two nodes on a decision path have
the same label.

5) The set of all outgoing edges of a node v, denoted E(v),
satisfies the following two conditions:

a) Consistency: 1(e) n 1(e') 0 for any two distinct
edges e and e' in E(v).

b) Completeness: UerE(v) (e) = D(F(v)). D
Figure 3 shows an example FDD over two fields F1, F2

where the domain of each field is [0,15]. Note that in labelling
terminal nodes, we use letter "a" as a shorthand for "accept"
and letter "d" as a shorthand for "discard".

Fig. 3. A packet classifier decision diagram

Given a packet classifier fl, we can construct an equivalent
FDD f2 using the FDD construction algorithm in [15].

B. Multi-dimensional TCAM Minimization

We start the discussion of our greedy solution by examining
the FDD in Figure 3. We first look at the subgraph rooted
at node v2. This subgraph can be seen as representing a
one-dimension packet classifier over field F2. We can use
the weighted one-dimensional TCAM minimization algorithm
in Section IV to minimize the number of prefix rules for
this one-dimensional packet classifier. The algorithm takes the
following 3 prefixes as input:

10 * * (with decision accept and cost 1),
0 *** (with decision discard and cost 1),
11 * * (with decision discard and cost 1).

The one-dimensional TCAM minimization algorithm will pro-
duce a minimum (one-dimensional) packet classifier of two
rules as shown in Table III.

Rule # F1 Decision
I 1O** accept
2 *** discard

TABLE III
A MINIMUM PACKET CLASSIFIER CORRESPONDING TO V2 IN FIGURE 3

Similarly, from the subgraph rooted at node V3, we can get
a minimum packet classifier of one rule as shown in Table IV.

Rule # F1 Decision
1 *** discard

TABLE IV

A MINIMUM PACKET CLASSIFIER CORRESPONDING TO V3 IN FIGURE 3

Next, we look at the root vl. As shown in Figure 4, we view
the subgraph rooted at v2 as a decision with a multiplication
factor or cost of 2, and the subgraph rooted at V3 as another
decision with a cost of 1. Thus, the graph rooted at v, can
be thought of as a "virtual" one-dimensional packet classifier
over field F1 where each child has a multiplicative cost.
Now we are ready to use the one-dimensional TCAM

minimization algorithm in Section IV to minimize the number

271

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

Fig. 4. "Virtual" one-dimensional packet classifier

of rules for this "virtual" one-dimensional packet classifier.
The algorithm takes the following 6 prefixes and associated
costs as input:

1000
101*
O* **

1001
11 * *

(with decision
(with decision
(with decision
(with decision
(with decision

v2 and cost 2),
v2 and cost 2),
V3 and cost 1),
V3 and cost 1),
V3 and cost 1),

Running the weighted one-dimensional TCAM minimization
algorithm on the above input will produce the "virtual" one-
dimensional packet classifier of three rules as shown in Table
V.

Rule # F1 Decision
1 1001 go to node V3
2 10** go to node V2
3 **** go to node V3

TABLE V

A MINIMUM PACKET CLASSIFIER CORRESPONDING TO VI IN FIGURE 3

Combining the "virtual" packet classifier in Table V and
the two packet classifiers in Table III and IV, we get a packet
classifier of 4 rules as shown in Table VI.

Rule # F1 F2 Decision
1 1001 **** discard
2 10** 10** accept
3 10* **** discard
4 **** **** discard

TABLE VI

PACKET CLASSIFIER GENERATED FROM THE FDD IN FIGURE 3

C. Removing Redundant Rules

Next, we observe that rule r3 in the packet classifier in Table
VI is redundant. If we remove rule r3, all the packets that used
to be resolved by r3 (that is, all the packets that match r3 but
do not match r1 and r2) are now resolved by rule r4, and r4 has
the same decision as r3. Therefore, removing rule r3 does not
change the semantics of the packet classifier. Redundant rules
in a packet classifier can be removed using the algorithms in
[16]. Finally, after removing redundant rules, we get a packet
classifier of 3 rules from the FDD in Figure 3.

D. The Algorithm

To summarize, TCAM Razor, our multi-dimensional TCAM
minimization algorithm, consists of the following four steps:

1) Convert the given packet classifier to an equivalent FDD.
2) Use the FDD reduction algorithm described in the next

section to reduce the size of the FDD. This step will be
explained in more detail in the next section.

3) Generate a packet classifier from the FDD in the follow-
ing bottom up fashion. For every terminal node, assign
a cost of 1. For a non-terminal node v with z outgo-
ing edges {el, , ez}, formulate a one-dimensional
TCAM minimization problem as follows. For every
prefix P in the label of edge ej, (1 j < z), we set
the decision of P to be j, and the cost of P to be the
cost of the node that edge ej points to. For node v, we
use the weighted one-dimensional TCAM minimization
algorithm in Section IV to compute a one-dimensional
prefix packet classifier with the minimum cost. We then
assign this minimum cost to the cost of node v. After
the root node is processed, generate a packet classifier
using the prefixes computed at each node in a depth
first traversal of the FDD. The cost of the root indicates
the total number of prefix rules in the resulting packet
classifier.

4) Remove all the redundant rules from the resulting packet
classifier.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and effi-
ciency of TCAM Razor on both real-life and synthetic packet
classifiers. Note that in cases where TCAM Razor cannot
produce smaller packet classifiers than redundancy removal
alone, TCAM Razor will return the classifier produced by
redundancy removal. Thus, TCAM Razor always performs at
least as well as redundancy removal.

A. Methodology
We first define the metrics that we used to measure the

effectiveness of TCAM Razor and the redundancy removal
technique by Liu and Gouda [16]. In this paragraph, f denotes
a packet classifier, S denotes a set of packet classifiers, and
A denotes either TCAM Razor or the redundancy removal
technique. We then let f denote the number of rules in
f, A(f) denote the prefix classifier produced by applying A
on f, and Direct(f) denote the prefix classifier produced by
applying direct range expansion on f. We define the following
four metrics for assessing the performance of A on a set of
classifiers S.

* The average compression ratio of A over S =

Ef ES ID(f)I

* The total compression ratio of A over S =
EfEsA(f)I

Ef(ES IDirect(f)l
IA(f)I

* The average expansion ratio of A over S = S Isl
* The total expansion ratio of A over S = EfES J(f)Zj sifl

272

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

B. Effectiveness on Real-life Packet Classifiers

We first define a set RL of 17 real-life packet classifiers that
we performed experiments on. We actually obtained 42 real-
life packet classifiers from distinct network service providers
that range in size from dozens to hundreds of rules. Although
this collection of classifiers is diverse, some classifiers from
the same network service provider have similar structure and
exhibited similar results under TCAM Razor. To prevent this
repetition from skewing the performance data, we divided the
42 packet classifiers into 17 structurally distinct groups, and
we randomly chose one from each of the 17 groups to form
the set RL.

1) Variable Ordering: The variable order that we used to
convert a packet classifier into an equivalent FDD affects the
effectiveness of TCAM Razor. There are 5! = 120 different
permutations of the five packet fields (source IP address,
destination IP address, source port number, destination port
number, and protocol type). We number these permutations
from 1 to 120, and we use the notation TCAM Razor(i) to
denote TCAM Razor using permutation i, and for a given
packet classifier f, we use TCAM Razor(B) to denote TCAM
Razor using the best of the 120 permutations for f.
A question that naturally arises is: which variable order

achieves the best average compression ratio? To answer this
question, for each permutation i, we computed the average
compression ratio that TCAM Razor(i) achieved over RL.
The results are shown in Figure 5. The maximum average
compression ratio is 41.8%. Furthermore, more than half of the
permutations have average compression ratios below 29.1%,
and four permutations have average compression ratios below
18.3%. Of these four permutations, permutation 49 (source
IP address, protocol type, destination IP address, destination
port number, source port number) is the best with an average
compression ratio of 18.2%.

and redundancy removal. The results show that permutation
49 achieves almost the best compression ratio for each packet
classifier group.

1.

0.8

0

4
0.6-

.2
uz

a)
, 0.4-

0

0.2h

U OL
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16

Packet Classifier Groups

Fig. 6. Compression ratios of real-life packet classifier groups

2) Compression Ratio: Our experimental results clearly
demonstrate that TCAM Razor outperforms just redundancy
removal [16]. For example, the average compression ratios of
TCAM Razor(49) and redundancy removal over RL are 18.2%
and 41.8% respectively. Similarly, the total compression ratios
of TCAM Razor(49) and redundancy removal over RL are

3.9% and 35% respectively. Figure 6 shows that TCAM
Razor(49) significantly outperforms redundancy removal on 13
of the 17 real-life packet classifier groups. TCAM Razor(49)
has a compression ratio of less than or equal to 1% on 8 of the
17 classifier groups in RL. Figure 7 shows the distribution of
compression ratios achieved by TCAM Razor and redundancy
removal alone on RL.

0.40 2

0.35-

o0.30-

0.U25-

S0.20.

~0.15

Q0.10

0.05

000 20 40 60 80 100 120

Permutation

Fig. 5. The average compression ratio for each permutation

The next natural question to ask is: is permutation 49 the

best order for most packet classifiers? The answer for RL is
yes. In Figure 6, for each packet classifier in RL, we show
the compression ratios of TCAM Razor(B), TCAM Razor(49),

_ Redundancy Removal

60 -

< 50

c,40

,,,,, 20**I

°10 I I
0[o,o.01] (0.01, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1]

Compression Ratio

Fig. 7. Distribution of real-life packet classifiers by compression ratio

3) Expansion Ratio: We observe similar results for expan-

sion ratio. The average expansion ratios for TCAM Razor(49),

redundancy removal, and direction range expansion over RL

are 0.754, 19.877, and 69.870, respectively. The total expan-

sion ratio for TCAM Razor(49), redundancy removal, and

273

- TCAM Razor(B)
_ TCAM Razor(49)

Redundancy Removal

T-.UI~~~ ~ ~ ~ ~ ~ ~~~ ~~~

zLA,

kil

n n6

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

direct range expansion over RL are 0.797, 7.147, and 20.414,
respectively.

Figure 8 shows the distribution of expansion ratios for
the following three algorithms: TCAM Razor(49), redundancy
removal, and direct range expansion. Range expansion is a real
issue as over 60% of our packet classifiers have an expansion
ratio of over 50 if we use direct range expansion. The
experimental data also suggests that TCAM Razor addresses
the range expansion issue well as TCAM Razor(49) has an
expansion ratio of at most 1 on 16 of the 17 real-life packet
classifier groups in our experiments, and TCAM Razor(49)
has an expansion ratio of 1.07 on the 17th real-life packet
classifier.

C)

0

Cd

01

Fig. 8. Distribution of real-life packet classifiers by expansion ratio

we generated a random range; for protocols, we generated
a random protocol number. Given these lists, we generated
a list of predicates by taking the cross product of all these
lists. We added a final default predicate to our list. Finally,
we randomly assigned one of two decisions, accept or deny,
to each predicate to make a complete rule.

Distributions of compression ratios and expansion ratios
over SYN are shown in Figures 9 and 10. The average
compression ratio of TCAM Razor(49) over SYN is 4.6%,
the average expansion ratio of TCAM Razor(49) over SYN
is 8.737, the total compression ratio of TCAM Razor(49)
over SYN is 1.6%, and the total expansion ratio of TCAM
Razor(49) over SYN is 3.082.

Cd
a)
.

Cd

0tuz

o
a1)

ct

a1)

Compression Ratio of TCAM Razor(49)

Fig. 9. Distribution of synthetic packet classifiers by compression ratio

C. Comparison with Dong et al. [6]
It is difficult to compare our results directly with those

of Dong et al. [6] because we do not have access to their
programs or the packet classifiers they experimented with.
However, TCAM Razor(49) has a total compression ratio of
3.9% on our real-life packet classifiers. In contrast, Dong et
al. reported a total compression ratiol of 54% on their real-life
packet classifiers.

D. Effectiveness on Synthetic Packet Classifiers
Packet classifier rules are considered confidential due to

security concerns. Thus, it is difficult to get many real-
life packet classifiers to experiment with. To address this
issue and further evaluate the performance of TCAM Razor,
we generated SYN, a set of synthetic packet classifiers of
18 sizes, where each size has 100 independently generated
classifiers.

Every predicate of a rule in our synthetic packet classifiers
has five fields: source IP address, destination IP address, source
port number, destination port number, and protocol type. We
first randomly generated a list of values for each field. For IP
addresses, we generated a random class C address; for ports

'By clarifying with the authors of [6], the term "average compression ratio"
in [6] is actually what we define as "total compression ratio" in this paper.

0

ud

C1)
0

Cd

a)
uz

a1)

ct

a1)

100
N TCAM Razor(49)
M Direct TCAM ExpansionF!

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

.................................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................40

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

[O, 0.5] (0.5, 1] (1, 25] (25, 50] (50, 312]
Expansion Ratio

Fig. 10. Distribution of synthetic packet classifiers by expansion ratio

E. Efficiency of TCAM Razor

We implemented TCAM Razor using Visual Basic on
Microsoft .Net framework 2.0. In our experiments, we first ran
TCAM Razor on real-life packet classifiers, and then we stress
tested TCAM Razor on a large number of big synthetic packet

274

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

classifiers. Our experiments were carried out on a desktop
PC running Windows XP with IG memory and a single 2.2
GHz AMD Opteron 148 processor. Table VII shows the total
running time of TCAM Razor(49) for three representative
packet classifiers. Figure 11 displays the average total running
time of TCAM Razor(49) on our synthetic packet classifiers
as a function of the number of original rules along with the
standard deviation.

Number of Original Rules TCAM Razor Running Time (seconds)
42 0.2
87 0.9
661 31.9

TABLE VII

SAMPLE RUNNING TIME DATA FOR REAL-LIFE PACKET CLASSIFIERS

20
U/)

O 15
a)

10

-~ 5
0

0~

-0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Original Rules

Fig. 11. Total runtime vs. number of original rules

VII. CONCLUSIONS

TCAMs have become the de facto industry standard for
packet classification. However, as the rules in packet classifiers
grow in number and complexity, the viability of TCAM-based
solutions is threatened by the problem of range expansion. In
this paper, we propose TCAM Razor, a systematic approach to
minimizing TCAM rules for packet classifiers. While TCAM
Razor does not always produce optimal packet classifiers, in
our experiments with 17 structurally distinct real-life packet
classifier groups, TCAM Razor reduced the number of TCAM
entries needed by an average of 81.8% percent and a total of
96.1%. In fact, TCAM Razor experienced no expansion for 16
of the 17 real-life packet classifier groups. While it is difficult
to perform a direct comparison with Deng et al.'s approach
[6], it appears that TCAM Razor performs significantly better
with a total compression ratio of 3.9% as compared with a
total compression ratio of 54%. Finally, unlike other solutions
that require modifying TCAM circuits or packet processing
hardware, TCAM Razor can be deployed today by network
administrators and ISPs to cope with range expansion.

REFERENCES

[1] Cypress semiconductor corp. content addressable memory.
http://www.cypress.comn.

[2] A guide to search engines and networking memory.
http://www.linleygroup.com/pdf/NMv4.pdf, November 2006.

[3] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and
J. Wang. Compressing rectilinear pictures and minimizing access control
lists. In Proceedings of the Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), January 2007.

[4] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to CAMs? In Proceedings of IEEE
INFOCOM, 2003.

[5] F. Baboescu and G. Varghese. Scalable packet classification. In
Proceedings ofACM SIGCOMM, pages 199-210, 2001.

[6] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet clas-
sifiers in ternary CAMs can be smaller. In Proceedings ofSIGMETRICS,
pages 311-322, 2006.

[7] R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal
IP routing tables. In Proceedings of IEEE INFOCOM, pages 88-97,
1999.

[8] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification.
In Proceedings of 19th IEEE INFOCOM, Mar. 2000.

[9] M. G. Gouda and A. X. Liu. Structured firewall design. Computer
Networks Journal, 51(4):1106-1120, March 2007.

[10] P. Gupta and N. McKeown. Packet classification on multiple fields. In
Proceedings ofACM SIGCOMM, pages 147-160, 1999.

[11] P. Gupta and N. McKeown. Packet classification using hierarchical
intelligent cuttings. In Proceedings ofHot Interconnects VII, Aug. 1999.

[12] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE
Network, 15(2):24-32, 2001.

[13] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching. In Pro-
ceedings ofACM SIGCOMM, pages 203-214, 1998.

[14] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms
for advanced packet classification with ternary cams. In Proceedings of
the ACM SIGCOMM, pages 193 - 204, August 2005.

[15] A. X. Liu and M. G. Gouda. Diverse firewall design. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN-04), pages 595-604, June 2004.

[16] A. X. Liu and M. G. Gouda. Complete redundancy detection in
firewalls. In Proceedings of 19th Annual IFIP Conference on Data
and Applications Security, LNCS 3654, S. Jajodia and D. Wijesekera
Ed., Springer-Verlag, pages 196-209, August 2005.

[17] H. Liu. Efficient mapping of range classifier into ternary-cam. In
Proceedings of the Hot Interconnects, pages 95- 100, 2002.

[18] M. H. Overmars and A. F. van der Stappen. Range searching and point
location among fat objects. Journal of Algorithms, 21(3):629-656.

[19] L. Qiu, G. Varghese, and S. Suri. Fast firewall implementations for
software-based and hardware-based routers. In Proceedings the 9th
International Conference on Network Protocols (ICNP), 2001.

[20] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of ACM SIGCOMM,
2003.

[21] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using ex-
tended tcams. In Proceedings of the 11th IEEE International Conference
on Network Protocols (ICNP), pages 120- 131.

[22] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. In Proceedings of ACM SIGCOMM, pages 191-
202, 1998.

[23] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional
routing tables. Algorithmica, 35:287-300, 2003.

[24] D. E. Taylor. Survey & taxonomy of packet classification techniques.
ACM Computing Surveys, 37(3):238-275, 2005.

[25] J. van Lunteren and T. Engbersen. Fast and scalable packet classification.
IEEE Journals on Selected Areas in Communications, 21(4):560- 571,
2003.

[26] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high
speed IP routing lookups. In Proceedings ofACM SIGCOMM, pages
25-36, September 1997.

[27] T. Y. C. Woo. A modular approach to packet classification: Algorithms
and results. In Proceedings of IEEE INFOCOM, pages 1213-1222,
2000.

[28] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. Ssa: A
power and memory efficient scheme to multi-match packet classification.
In Proceedings of the Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 105-113, October 2005.

275

25,

-5.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

