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Abstract—Data structures representing directed graphs with
edges labeled by symbols from a finite alphabet are used to
implement packet processing algorithms used in a wvariety of
network applications. In this paper we present a novel approach
to represent such data structures, which significantly reduces the
amount of memory required. This approach called Hisfory-based
Encoding, eXecution and Addressing (HEXA) challenges the
conventional assumption that graph data structures must store
pointers of |_10g2n-| bits to identify successor nodes. We show how
the data structures can be organized so that implicit information
can be used to locate successors, significantly reducing the
amount of information that must be stored explicitly. We
demonstrate that the binary tries used for IP route lookup can be
implemented using just two bytes per stored prefix (roughly half
the space required by Eatherton’s tree bitmap data structure) and
that string matching can be implemented using 20-30% of the
space required by conventional data representations.

Compact representations are useful, because they allow the
performance-critical part of packet processing algorithms to be
implemented using fast, on-chip memory, eliminating the need to
retrieve information from much slower off-chip memory. This can
yield both substantially higher performance and lower power
utilization. While enabling a compact representation, HEXA does
not add significant complexity to the graph traversal and update,
thus maintaining a high performance.

Index Terms— content inspection, IP lookup, string matching

I INTRODUCTION

everal common packet processing tasks make use of

directed graph data structures in which edge labels are

used to match symbols from a finite alphabet. Examples
include tries used in IP route lookup and string-matching
automata used to implement deep packet inspection for virus
scanning. In this paper, we develop a novel representation for
such data structures that is significantly more compact than
conventional approaches. This compactness can lead to higher
performance in implementation contexts where we have small
on-chip memories with ample memory bandwidth and larger
off-chip memories with more limited bandwidth. These
characteristics are common to conventional processors,
network processors, ASICs and FPGA implementations.

We observe that the edge-labeled, directed graphs used by
some packet processing tasks have the property that for all
nodes u, all paths of length k leading to u are labeled by the
same string of symbols, for all values of &k up to some bound.
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For example, tries satisfy this condition trivially, since for each
value of k, there is only one path of length k leading to each
node. The data structure used in the Aho-Corasick string
matching algorithm [2] also satisfies this property, even though
in this case there may be multiple paths leading to each node.
Since the algorithms that traverse the data structure know the
symbols that have been used to reach a node, we can use this
“history” to define the storage location of the node. Since
some nodes may have identical histories, we need to angment
the history with some discriminating information, to ensure
that each node is mapped to a distinct storage location. We
find that in some applications the amount of discriminating
information needed can be remarkably small. For binary tries
for example, two bits of discriminating information is
sufficient. This leads to a binary ftrie representation that
requires just two bytes per stored prefix for IP routing tables
with more than 100K prefixes. We call the technique used to
construct these compact data representations, History-based
Encoding, eXecution and Addressing (HEXA).

In Section II, we introduce HEXA and apply it to binary
tries. We show that the problem of selecting discriminators
corresponds to finding a perfect matching in a bipartite graph;
we also show how the data structure can be incrementally
modified. In Section III, we describe a variant of HEXA in
which the discriminator specifies the amount of history
information that has to be used to identify the storage location
of a node. We then apply this technique to the data structure
used by the Aho-Corasick string matching algorithm as well as
the bit-split version of the algorithm [6]. In Section IV we
report on the results of our evaluation of HEXA for binary
tries and string matching. Section V covers the related work
and the paper ends with concluding remarks in Section VI.

II. INTRODUCTION TO HEXA

Directed graphs are commonly used to implement various
packet processing algorithms which are used in a variety of
network applications, some of which are listed below:

* Longest prefix match IP lookup: IP routing involves a
longest prefix match, where destination IP address of a
packet is matched against a large but finite set of prefixes
and the longest matching prefix determines the next hop.
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Tries, which essentially are a directed graph without any
cycles, are often used to implement such operations.

¢ Packet classification: Packet classification involves a
multi-dimensional search on packet’s 5-tuple (source/
destination addresses, ports and protocol). Search in each
dimension often consists of a longest prefix match, which is
commonly implemented using tries. These tries usually have
a similar structure as an IP lookup trie.

¢ String matching: Commercial network security devices
like network intrusion detection systems (NIDS), and
application layer firewalls often use string based pattern
matching to identify malicious packets. String matching is
usually performed with the aid of a finite automaton (e.g.
Aho-Corasick, Wu-Manber etc), which is a directed graph
with labeled edges. Nodes of these graphs usually have
much higher and varving out-degrees.

¢ Regular expression matching: Modern security systems
specify the patterns of interest using regular expressions.
Regular expressions are also used to enable advanced
network services like content based routing, metering, etc.
Finite automata are usvally used to implement regular
expressions, which are again a labeled directed graph.
Complex expressions usually lead to relatively complex
graphs, as compared to a string based automaton.

* There are several other applications, which use directed
graph structures. Some examples are a web indexing and
search engines, an access control list (ACL), or even a file
system. In this paper, we will mostly focus on the first four
applications.

Since such a wide variety of network applications employ
some form of directed graph traversal, a large body of research
literature has focused on improving its performance. For
example, [11] propose a multi-bit trie representation, where
multiple nodes of a binary trie are merged into a single node.
There are also schemes to compactly encode these multi-bit
trie nodes [13]. Another class of directed graphs is finite
automaton; in [5] authors present techniques to improve the
parsing performance of a finite automaton, which is used to
perform string matching. It uses a similar technique, where
multiple states of the automaton are merged into a single state
and represented compactly. In [6], authors propose an
alternative technigue to reduce the space by reducing the
number of transitions from every node of the graph.

Most of these solutions are too specialized,; fine tuned and
optimized for their respective applications, however a common
link between them is that they reduce the memory by either
reducing the number of transitions in the graph or by reducing
the number of nodes. They also demonstrate that the space
reduction achieved by reducing the number of nodes and/or
transitions may also enhance the parsing performance of the
graph, by utilizing the fast but limited on-chip memory.

With or without the reductions in the number of nodes or
transitions, to our best knowledge, directed graphs are always
implemented in the following conventional manner. Hach node
in the » node graph is denoted by a unique rlogznw bit

identifier, which also determines the memory location of the
node. At this memory location, all transitions of the node
(identifiers of the subsequent “next nodes™) are stored, along
with some auxiliary information. The auxiliary information
may be a flag indicating if the node corresponds to a match in
a string matching automata or a valid prefix in an IP lookup
trie, and an identifier for the string, or the next hop for the
matching prefix. The auxiliary information usually requires
only a few bits and is kept once for every node; on the other
hand, identifiers of the “next node” use Floggﬂ bits each and
are required once for every transition. Thus, in large graphs
{say a million nodes) containing multiple transitions per node
{(say two), the memory required by the identifiers of the “next
node” (20-bits per identifier, 2 such identifiers per node) can
be much higher than the memory required by the auxiliary
information.

Another complicating factor in the conventional design
approach is that, the transitions or the identifiers of the “next
node” are read for each symbol in the input stream, while the
auxiliary information is read only upon a match. This
necessitates that the “next node” identifiers be stored in a high
speed memory (e.g. SRAM or embedded) in order to enable
high parsing rate. For instance, a high performance lookup trie
may store the set of “next nodes”, for every node, in a fast
memory along with a flag indicating whether the node
corresponds to a prefix. On the other hand, the next hop
information can be kept with a shadow trie, stored in a slow
memory like DRAM. Similarly, in string matching automaton,
in addition to the *“next node” identifiers, only a flag per node
is needed in the fast memory, which will indicate whether the
node is a match. The prime motivation of such separation of
fast and slow path is to reduce the high speed memory, which
is often expensive and less dense. The advantages are however
undermined as the identifiers of the “next node™ represent a
large fraction of the total memory. While there is a general
interest in reducing the total memory, clearly there are
increased benefits in reducing the memory required to store
these “next node” identifiers.

In this paper, we propose a new method to store directed
graph structures that we dub HEXA (History based Encoding,
eXecution, and Addressing). While conventional methods use
"logon | bits to identify each of n nodes in a graph, by taking
advantage of the graph structure, HEXA employs a novel
method that can use a fixed constant number of bits per node
for structured graphs such as tries. Thus, when HEXA based
identifiers are used to denote the transitions of the graph, the
fast memory needed to store these transitions can be
dramatically reduced. The total memory is also reduced
significantly, because auxiliary information often represents a
small fraction of the total memory.

The key to the identification mechanism used by HEXA is
that when nodes are not accessed in a random ad-hoc order but
in an order defined by its transitions, the nodes can be
identified by the way the parsing proceeds in the graph. For
mmstance, in a trie, if we begin parsing at the root node, we can
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Figure 1: a) routing table, b) corresponding binary trie.

reach any given node only by a unique stream of input
symbols. In general, as the parsing proceeds, we need to
remember only the previous symbols needed to uniquely
identify the nodes. To clarify, we consider a simple trie-based
example before formalizing the ideas behind HEXA.

A. Monivaring Example

Let us consider a simple directed graph given by an IP
lookup trie. A set of 5 prefixes and the corresponding binary
trie, containing 9 nodes, is shown in Figure 1. We consider
first the standard representation. A node stores the identifier of
its left and right child and a bit indicating if the node
corresponds to a wvalid prefix. Since there are 9 nodes,
identifiers are 4-bits long, and a node requires total 9-bits in
the fast path. The fast path trie representation is shown below,
where nodes are shown as 3-tuple consisting of the prefix flag
and the left right children (NULL indicates no child):

1.0,2,3 4. 1,NULL, NULL. 7.0, 9, NULL
2.0,4,5 50,7, 8 8. 1, NULL, NULL
3. 1, NULL, 6 6. 1, NULL, NULL 9. 1, NULL, NULL

Here, we assume that the next hops associated with a
matching node are stored in a shadow trie which is stored in a
relatively slow memory. Note that if the next hop trie has a
structure identical to the fast path trie, then the fast path trie
need not contain any additional information. Once the fast path
trie is traversed and the longest matching node is found, we
will read the next hop trie once, at the location corresponding
to the longest matching node.

We now consider storing the fast path of the trie using
HEXA. In HEXA, a node will be identified by the input stream
over which it will be reached. Thus, the HEXA identifier of
the nodes will be:

1. - 5.00 7. 010
2.0 6. 01 8. 011
3.1 7.11 9. 0100

These identifiers are unique. HEXA requires a hash
function; temporarily, let us assume we have a minimal perfect
hash function f that maps each identifier to a unique number in
[1, 9]. (A minimal perfect hash function is also called a one-to-
one function.) We use this hash function for a hash table of 9
cells; more generally, if there are n nodes in the trie, n; is the
HEXA identifier of the i® node and fis a one-to-one function
mapping #;’s to [1, r], Given such a function, we need to store
only 3 bits worth of information for each node of trie in order
to traverse it: the first bit is set if node corresponds to a valid
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prefix, and second and third bits are set if node has a left and
right child. Traversal of the trie is then straightforward. We
start at the first trie node, whose 3-bit tuple will be read from
the array at index f{-). If the match bit is set, we will make a
note of the match, and fetch the next bit from the input stream
to proceed to the next trie node. If the bit is 0 (1) and the left
(right) child bit of the previous node was set, then we will
compute f{n;), where r; is the current sequence of bits (in this
case the first bit of the input stream) and read its 3 bits. We
continue in this manner until we reach a node with no child.
The most recent node with the match bit set will correspond to
the longest matching prefix.

Continuing with the earlier trie of 9 nodes, let the mapping
function f, has the following values for the nine HEXA
identifiers listed above:

1. f) =4 4. f00) = 2 7. f010)=5
2.0) =7 5.f01)=8 8. f011) =3
3. f(1)=9 6. f11) =1 9. f0100) = 6

With this one-to-one mapping, the fast path memory array
of 3-bits will be programmed as follow; we also list the
corresponding next hops:

1 2 3 4 5 6 7 8 9
Fast path [1,0,01,0,0§1,0,000,1,1}0,1,0]1,0,0f0,1,1}0,1,1]1,0,1
Nexthop [ P3 | P2 | P4 | P5 | P1

This array and the above mapping function are sufficient to
parse the trie for any given stream of input symbols.

This example suggests that we can dramatically reduce the
memory requirements to represent a trie by practically
eliminating the overheads associated with node identifiers.
However, we require a minimal perfect hash function, which is
hard to devise. In fact, when the trie is frequently updated,
maintaining the one-to-one mapping may become extremely
difficult. We will explain how to enable such one-to-one
mappings with very low cost. We also ensure that our
approach maintains very fast incremental updates; i.e. when
nodes are added or deleted, a new one-to-one mapping can be
computed quickly and with very few changes in the fast path
array.

B. Devising One-fo-one Mapping

We have seen that we can compactly represent a directed
trie if we have a minimal perfect hash function for the nodes of
the graph. More generally, we might seek merely a perfect
hash function; that is, we map each identifier to a unique
element of [1, m] for some m = n, mapping the 7 identifier into
m array cells. For large n, finding perfect hash functions
becomes extremely compute intensive and impractical.

We can simplify the problem dramatically by considering
the fact that HEXA identifier of a node can be modified
without changing its meaning and keeping it unique. For
instance we can allow a node identifier to contain few
additional {(say ¢) bits, which we can alter at our convenience.
We call these ¢-bits the node’s discriminator. Thus, HEXA
identifier of a node will be the history of labels on which we
will reach the node, plus its ¢-bit discriminator. We use a
(pseudo)-random hash function to map identifiers plus
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discriminators to possible memory locations. Having these
discriminators and the ability to alter them provides us with
multiple choices of memory locations for a node. Each node
will have 2° choices of HEXA identifiers and hence up to 2°
memory locations, from which we have to pick just one. The
power of choice in this setting has been studied and uvsed in
multiple-choice hashing [23] and cuckoo hashing [1], and we
use results from these analyses.

Note that when traversing the graph, when trying to access a
node we need to know its discriminator. Hence instead of
storing a single bit for each left and right child, representing
whether it exists or not, we store the discriminator if the child
exists. In practice, we may also optionally reserve the all-0 c-
bit word to represent NULL, giving us only 2°-1 memory
locations.

This problem can now be viewed as a bipartite graph
matching problem. The bipartite graph G = (V1+Va, E) consists
of the nodes of the original directed graph as the left set of
vertices, and the memory locations as the right set of vertices.
The edges connecting the left to the right correspond to the
edges determined by the random hash function. Since
discriminators are ¢-bits long, each left vertex will have up to
27 edges connected to random right vertices. We refer to G as
the memory mapping graph. We need to find a perfect
matching (that is, a matching of size n) in the memory
mapping graph G, to match each node identifier to a unique
memory location.

If we require that m = n, then it suffices that ¢ is log logn +
O(1) to ensure that a perfect matching exists with high
probability. More generally, using results from the analysis of
cuckoo hashing schemes [1], it follows that we can have
constant ¢ if we allow m to be slightly greater than n. For
example, using 2-bit discriminators, giving 4 choices, then m =
1.1rn guarantees that a perfect matching exists with high
probability. In fact, not only do these perfect matchings exist,
but they are efficiently updatable, as we describe in Section
II.C.

Continuning with our example of the trie shown in Figure 1,
we now seek to devise a one-to-one mapping using this
method. We consider m = r and assume that ¢ is 2, so a node
can have 4 possible HEXA identifiers, which will enable it to
have up to 4 choices of memory locations. A complication in
computing the hash values may arise because the HEXA
identifiers are not of equal length. We can resolve it by first
appending to a HEXA identifier, its length and then padding
the short identifiers with zeros. Finally we append the
discriminators to them. The resulting choices of identifiers and
the memory mapping graph is shown in Figure 2, where we
assume that the hash function is simply the numerical value of
the identifier modulo 9. In the same figure, we also show a
perfect matching with the matching edges drawn in bold. With
this perfect matching, a node will require only 2-bits to be
uniquely represented {as ¢ = 2).

We now consider incremental updates, and show how a one-
to-one mapping in HEXA can be maintained when a node is
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Nodes Input labels Four choicas of Choicas of Bipartite graph and
HEXA identifiers memory locations a perfect matching
1 - 00 -, 01 -, ) =0,h()=4
10,11 - hy=1,h(}=5
000,010, h}=1,h(}=5
2 0 100,110 hy=2,h()=6
3 1 001,011, ) =0,h()=4
101,111 hiy=1,h(}=5
00 00, 01 00, hy=2,h()=6
4 00 1000, 1100 hiy=3,h()=7
00 01,0101, hy=1,h(}=5
5 01 1001, 1101 hiy=2hi)=6
00 11,0111, hi)=8h()=3
6 1 10 11,11 11 hi)=0h{)=4
00 010, 01 010, hi)=1,h(}=5
7 010 10010, 11 010 h(y=2.h(}=8
00011, 01 011, hi)=0h{)=4
8 on 10011, 11 011 hi}=1.h(}=5
00 0100, 01 0100, h()=0h(}=3
9 0100 100100, 11 0100 h)=4,h()=6

\l’ -
=

Figure 2: Memory mapping graph, bipartite matching.

removed and another is added to the trie.

C. Updating a Perfect Maiching

In several applications, such as IP lookup, fast incremental
updates are critically important. This implies that HEXA
representations will be practical for the applications only if the
one-to-one nature of the hash function can be maintained in the
face of insertions and deletions. Taking advantage of the
choices available from the discriminator bits, such one-to-one
mappings can be maintained easily.

Indeed, results from the study of cuckoo hashing
immediately vield fast incremental updates. Deletions are of
course easy, we simply remove the relevant node from the
hash table (and update pointers to that node). Insertions are
more difficult; what if we wish to insert a node and its
corresponding hash locations are already taken? In this case,
we need to find an avgmenting path in the memory mapping
graph, remapping other nodes to other locations, which is
accomplished by changing their discriminator bits. Finding an
augmenting path will allow the item to be inserted at free
memory location, and increasing the size of the matching in
the memory mapping graph. In fact for tables sized so that a
perfect matching exists in the memory mapping graph,
augmenting paths of size O(log n) exist, so that only G{log n)
nodes need to be re-mapped, and these augmenting paths can
be found via a breadth first search over o(r) nodes [1]. In
practice, a random walk approach, where a node to be inserted
if necessary takes the place of one of its neighbors randomly,
and this replaced node either finds an empty spot in the hash
table or takes the place of one of its other neighbors randomly,
and so on, finds an augmenting path quite quickly [1].

We also note that even when m = s, so that our matching
corresponds to a minimal perfect hash function, using ¢ =
O(log log n) discriminator bits guarantees that if we delete a
node and insert a new node (so that we still have m = &), an
augmenting path of length O(log n/ log log n) exists with high
probability. We omit the straightforward proof.

We will demonstrate in our experiments that the number of
changes needed to maintain a HEXA representation with node
msertions and deletions is quite reasonable in practice. Again,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:38 from IEEE Xplore. Restrictions apply.



e

g <y
\O—a—o‘ﬁl—é/

Figure 3: Aho-Corasick automaton for the three strings
abe, cab and abba . Gray indicates accepting node

similar results can be found in the setting of cuckoo hashing.

III. BounDED HEXA (BHEXA)

Our current description of HEXA is useful when graph is
acyclic and the total number of input symbols that we parse is
bounded. However, in cyclic graphs, the HEXA identifiers
may become unbounded if we continue traversing a loop and
receiving input symbols. One way to enable bounded HEXA
identifier is to restrict it to say previous k symbols, where &
may be different for different nodes. However, this requires
that all incoming k-long paths into all nodes of the graph have
identical sequence of labels. Clearly, nodes of a general cyclic
graph will not meet this requirement even for k=1 as there may
be multiple incoming transitions into a node labeled with
different symbols. Fortunately, a large number of cyclic graphs
which are used in networking applications do not exhibit this
property, and ensure that all incoming transitions into a node
are labeled with identical symbol. In fact, all incoming &-long
paths into a node are labeled with identical sequence of
symbols, thus potentially creating long unique identifiers;
notice that here k is different for different nodes.

The well known and widely used Aho-Corasick based string
matching automata is one such cyclic graph. All k-long (k>0)
paths leading into any node have identical sequence of labels,
with root node being an exception. Several variants of string
matching automata (e.g. Wu-Manber [4] and Commentz-
Walter [3]), including the recently proposed bit-split version of
Aho-Corasick [6], which is one of the fastest known embedded
implementation, exhibit similar characteristics.

For such graphs, we introduce an extension called bounded
HEXA (bHEXA) which examines a variable but finite number
of symbols in the history to identify a node, instead of
examining the entire history. Since the number of history
symbols that we examine may be different for different nodes,
bHEXA identifiers require additional bits to indicate this
length. While these bits add up to the memory, having variable
length identifiers also opens up another dimension of multiple
choices of identifiers for the nodes, which helps in finding a
one-to-one mapping and reduce the dependence on
discriminator bits or even avoid using them. To clarify, we
consider a simple string-based example.

A. Motivating Example

Let us consider Aho-Corasick automaton for the 3 strings:
abe, cab and abba, defined over the alphabet {a, b, ¢}. The
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automaton (shown in Figure 3) consists of 9 nodes {(all
symbols for which a transition is not shown in the figure are
assumed to lead to state 1). A standard implementation of this
automaton will use 4-bit node identifiers. These identifiers will
determine the memory location where the transitions of the
node will be stored. There are three transitions per node (over
symbols a, b and c, respectively) and assuming that a match
flag is required for every node, the fast path memory will store
four entries for each of the nine nodes, as shown below:

l.no,2,1,7 4.no,5,1,7 7.n0,8,1,7
2.n0,2,3,7 5. match, 2, 3,7 8.n0,2,9,7
3.n0,2,4,6 6. match, 8, 1, 7 9, match, 2,4, 6

Since node identifiers are 4-bits, in this case a node requires
13-bits of fast path memory. We now attempt to use bHEXA
to represent this automaton. Since bHEXA allows identifiers to
contain variable number of input symbols from the history, our
first objective is to identify the legitimate bHEXA identifiers
for the nodes. Clearly, we would like to keep the identifier
unique for each node, irrespective of the path that leads to the
nede. The identifier of the root node is “~", as it is visited
without receiving any input symbol (zero path length). The
identifiers of the nodes which are one transition away from the
root may contain up to one symbol from the history because all
single transition path that will lead to such nodes will be
labeled with identical symbol. As an example, all incoming
edges into node 2 are labeled with a; thus its identifier can
either be — or a. Similarly, the identifier of node 7 can be — or
2. In general, a node which is k transitions away from the root
may have the bHEXA identifier of any length up to & symbols.

For  example, both  paths 1—232-t 3
90— 435 3 leads to the node 3, and the last two
symbols in these paths are identical; consequently, its bHEXA

identifier can either be — or b or ab. Choices of bHEXA
identifiers for the remaining nodes are listed below:

and

1, = 5.— b, bb, abb 7. -, ¢
2. - a 6.—, a,ba,bba, abba 8. -, a, ca
3. -, b,ab 7.- c,be, abe 9. — b, ab, cab

Notice that each of the above bHEXA identifier is
legitimate. However, we must ensure that, the ones we choose
are unique, so that no two nodes end up with identical
identifiers. If we employ c-bit discriminators with bHEXA
identifiers then we may allow up to 2° nodes pick identical
identifiers and then use different discriminator values to make
them unique. The memory mapping method that we present in
the next section enforces these constraints and ensures that
bHEXA identifier of each node is unique.

B. Memory Mapping

The next step is to select a bHEXA identifier for every
node, such that they are mapped to unique memory locations.
A large fraction of nodes, being away from the root node, are
likely to have several choices of bHEXA identifiers, which
will improve the probability of a one-to-one mapping. These
choices however come at a cost; if a node has & choices (can
have up to &1 symbols long bHEXA identifier) then up to
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[ logok | additional bits may be needed to indicate the length of
its identifier. During the graph traversal, these bits will be
required to determine the exact number of history symbols that
forms the bHEXA identifier of the node. In our example
automaton, node 5 has 5 choices; hence 3-bits may be needed
to indicate the length of its bHEXA identifier. We can
however omit the last choice from its set of legitimate
identifiers, thereby keeping the bHEXA identifiers within four
symbols and requiring only 2-bits. For completeness, we also
keep c-bit discriminators (¢ may be zero, if we do not need
them). Notice that instead of storing the complete bHEXA
identifier, only C+F10g2k1 bits worth of information is required
to be stored; this information along with the history of input
symbols are sufficient to re-generate the complete bHEXA
identifier of any given node.

Continuing with our example, we construct a memory
mapping graph (as described in Section II.B), which is shown
in Figure 4. In the graph we use m=10, thus an extra memory
cell is available for the nine nodes. We also limit the bHEXA
identifiers contain up to three history symbols and do not use
discriminators. The edges of the graph are determined by the
hash function k, which is:

h= (Z: s, xi)mod10; for the BHEXA identifier sy...s

In this formula, the input symbols are assumed to take these
numerical values: —=0, a=1, b=2, ¢=3.

In the same figure, a maximum matching in the memory
mapping graph is highlighted, which assigns a unique memory
location to each node of the automaton. According to this
matching, the bHEXA identifiers of the nodes are chosen as:

Nodes 1 2 3 4 5 6 7 8 9

bHEXA | — a |ab | bbb |bhalbec| ¢ |ca| b

length ol 112121312121

Notice again that we only store the length of bHEXA
identifiers in the memory (and discriminators, if they are used).
During the graph traversal, the length and the history of input
symbols are sufficient to reconstruct the complete bHEXA
identifier. Since the length can be encoded with 2-bits in this
case and there are no discriminators, the fast path will require
total 7 bits per node: a match flag and 2-bits each to indicate
the length of the bHEXA identifiers of the three “next nodes”
for the symbols a, b and c, respectively. The resulting
programming of the fast path memory is shown below:

Mem. location node matchflag & b c
0 1 0 01 | 00 | 01
1 2 0 01110101
2 9 1 01110101
3 7 0 10 [ 00 | 01
4 8 0 01 101 |01
3 3 0 01110 ] 10
6 4 0 11 [ 00 | 01
7
8 1 10 [ 00 | 01
9 3 1 01 ] 10|01

Compared to a standard implementation {13-bits per node),
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Nodes Choices of Cholces of Bipartite graph and
BHEXA identifiers  memory lozations 4 maximum matching
1 - hi-) = 0
- hi-1=0
2 hia) =1
e — 48, 48b hi-)=0 hia) =1
hiab) =5
4 —, b, kb, abb hi-j=0 hiby =2
hibb)=6  hlabb) =1
5 — 8, ba, bha hi-)=0 h{ay=1
hiba)=4  hibba) =9
8 -, G be, abe hi=) = hic) =3
hibe) =8 hiabc) =4
-G hi-1=0
7 hic) =3
-] — 48,04 hi-)=0 h{ay=1
hica) =4
9 — b, ab, cab hi-j=0  hib)=2
hiab)=5  h{cab) = 9

Figure 4: Memory mapping graph, bipartite matching.

bHEXA uses about half memory (7-bits per node). There may
however be circumstances when a perfect matching does not
exist in the memory mapping graph. There are two possible
solutions to resolve this problem. The first solution is upward
expansion, in which additional memory cells are allocated;
each new cell improves the likelihood of a larger matching.
The second solution is sideways expansion, in which an extra
bit 18 added, either to the discriminator of the bHEXA
identifier or to its length, whichever leads to larger matching.
Notice that each such extra bit doubles the number of edges in
the memory mapping graph, which is likely to produce
significantly larger matching. Unfortunately, sideways
expansion also increases the memory rapidly. For example, if
the current bHEXA identifiers require 3-bits, then a single bit
of sideways expansion will increase the total memory by 33%.

A memory efficient way of finding one-to-one mapping
should iterate between two phases. In the first phase, upward
expansion will be applied until the added memory exceeds the
memory needed by a single bit of sideways expansion. If one-
to-one mapping is not yet found then the second phase will
begin, which will reset the previous upward expansion and
perform a bit of sideways expansion. If a one-to-one mapping
is still not found, the first phase is repeated (without resetting
the sideways expansion). This method is expected to find a
one-to-one mapping while also minimizing the memory. Inreal
bHEXA implementations, however, some new challenges may
also arise, which we discuss in the coming section.

C. Pracrical Considerations

The challenges that may appear during the implementation
of bHEXA are likely to depend primarily on the characteristics
of the directed graph. The first challenge may arise when the
directed graph contains long paths, all of whose edges have
identical labels. Consider the Aho-Corasick automaton for !
characters long string such as aaaaa... There will be /+1
nodes in the automaton and the legitimate bHEXA identifier
for the ™ node will be any such string (aaa...) of length less
than i. In this case, if we attempt to find a one-to-one mapping
without using any discriminator then the bHEXA identifier of
any i™ node will be i—1 characters long. Since there are [+1
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nodes, the longest bHEXA identifier will contain [ symbols
and hoggﬂ bits will be required to store its length. If we
employ ¢ discriminator bits then the longest bHEXA
identifiers can be reduced by a factor of 2°, nevertheless the
total number of bits that will be stored per bHEXA identifier
will remain the same. Clearly, large ! will undermine the
memory savings achieved by using bHEXA. While such
strings are not common, we would still like to decouple the
performance of bHEXA from the characteristics of the strings
sets.

Ome way 1o tackle the problem is to allow the length bits to
indicate superlinear increments in bHEXA identifier length.
For instance, if there are three length bits available then they
may be enabled to represent the bHEXA lengths of 0, 1, 2, 3,
5,7, 12, and 16, thereby covering a much larger range of
bHEXA lengths. Of course, the exact values that the length
bits will represent will depend upon the strings database.
Second way to tackle the problem is to employ a small on-chip
CAM to store those nodes of the automaton that could not be
mapped to a unique memory location due to the limited
number of length and discriminator bits. In our previous
example, if { is 9, and the bHEXA lengths are represented with
3-bits, then at least 2 nodes of the automaton can not be
mapped to any unique memory location. These nodes can be
stored in the CAM and can be quickly looked at during the
parsing. We refer to the fraction of total nodes that can not be
mapped to unique memory location as the spill fraction. In our
experiments, we find that for real world string sets, the spill
fractions remains low, hence a small CAM will suffice.

D. Challenges with General Finite Automaton

Modern network security appliances use regular expressions
matching and employ finite automata to represent them [xxx].
Since complex regular expressions generally lead to large and
complex automaton, it is important to reduce their memory
footprint to enable an on-chip implementation and high parsing
speed. Therefore, we investigate if it is possible to use some
variant of bHEXA be to represent a general finite automata
and save memory. Unfortunately, our early analysis suggests
that for the finite automaton representation of the regular
expressions used in current systems, it is difficult to save
memory by using bHEXA. The primary reason is the extensive
use of character classes in these regular expressions. We
consider the following simple example to illustrate this.

Consider the simple regular expressions [ab] [ca] [kal;
such expressions are commonly used. The resulting automaton
is shown below.

—b@—a,b—@—c,a—@—b,c—@

In this automaton, none of the nodes have all of its incoming
paths labeled with unique sequence of symbols. Thus, it is
difficult to use bHEXA identifiers to identify them. One may
add new symbols in the alphabet, which will represent those
character classes that are present in the regular expressions,

thereby enabling paths with unique sequences of symbol. This
however is likely to significantly expand the alphabet size,
which will significantly increase the number of outgoing
transitions from every node!. For instance, we find that, the
regular expressions sets used in modern security appliance
from Cisco Systems [xxx] have several thousand different
character classes. Other sets [xxx] of regular expressions
exhibit similar characteristics. This is likely to offset any
memory reduction achieved with the bHEXA identifiers.

An orthogonal complication concerns with the performance.
With the expanded alphabet, one may require additional
memory lookups to map any given input symbol into the
alphabet symbol representing the appropriate character class.
Such additional lookups for every input symbol will adversely
affect the parsing performance, and additional memory
bandwidth will be required to maintain a given level of parsing
rate. Memory bandwidth being much pricier than the memory
size [xxx], such trade-offs may not be desirable {assuming that
we were able to save some memory with bHEXA).

To conclude, it appears plausible to employ bHEXA for the
finite automata used to represent regular expressions used in
modern networking equipments, we conclude that it not clear,
if this will lead to significant memory saving. The added
complexity in parsing and symbol resolution to the character
classes will offset the memory saving, if there is any at all.
Nevertheless, we leave further investigation of the issue for the
future research.

1IV. EXPERIMENTAL EVALUATION

We have performed a thorough experimental evaluation of
the HEXA and bHEXA representations. First, we consider
HEXA based representation of real world IP lookup tries. The
results demonstrate that, HEXA can dramatically reduce the
memory required by a binary trie; at the same time it can also
reduce the memory in more sophisticated trie implementations
like multi-bit trie and tree bit-map. Second, we employ HEXA
to implement the finite automata, which are used to perform
string matching operations. We consider two flavors of high
performance string matcher, the classic Aho-Corasick
automaton, and the recently proposed bit-split version. We
show that, in both cases, HEXA reduces memory by up to five
times without sacrificing the parsing performance.

A, Resulis on Tries

BGP tables have grown steadily over the past two decades
from less than 5000 entries in the early 1990s to nearly 75,000
entries in 2000 to 135,000 entries today, and the growth is
expected to continue in the near future. Binary tries are a
standard method to implement these BGP tables and enable
fast lookup. High performance implementations of these
lookup tries consider multiple input bits at a time, thereby
creating multi-bit nodes. The multi-bit nodes can be
represented compactly by using tree bit-map tactics. In our

! Notice that in a DFA, at any given node, there is an outgoing transition
for every symbol in the alphabet.
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identifier that is needed to successfully perform the
memory mapping
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Figure 6: Memory needed to represent the fast path
portion of the trie with and without HEXA. 32 tries are
used, each containing between 100-120k prefixes.

experiments, we have employed HEXA to implement both
binary trie as well as multi-bit trie. Unless otherwise specified,
the reported results are based on the prefixes in more than fifty
BGP tables obtained from [19].
1) Binary Tries

In Figure 4, for varying trie sizes, we plot the number of
choices of HEXA identifiers that are needed to ensure that a
perfect matching exists in the memory mapping graph with
more than 90% probability. As expected, more choices of
HEXA identifiers or increased memory over-provisioning
{(m—n)/m) improves the chances of a perfect matching. In
compliance with the theoretical analysis, for m=n, the required
number of HEXA identifier choices remains O(log n).
However, when m is slightly greater than 2 (results for 1, 3 and
10% are reported here), the required number of choices
becomes constant, independent of the trie size. Recall that the
number of HEXA identifier choices determines the number of
discriminator bits that are needed for a node, thus a small
memory over-provisioning is desirable in order to keep the
discriminators constant in size.

From a practical point, we would like to keep the number of
choices of HEXA identifiers a power of two minus one, so that
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that is needed to successfully perform the memory
mapping

one discriminator value will be used to indicate a null child
node and all remaining permutations of discriminator values
will be used in finding better matching. Thus, we are interested
in such number of HEXA choices as 1, 3, 7, etc. Therefore, we
fix the number of HEXA choices at these values, and plot the
memory over-provisioning needed to successfully perform a
one-to-one memory mapping (Figure 3). It is clear that that for
3 HEXA identifier choices, the required memory over-
provisioning is 10%. Thus, 2.2 bits are enough to represent
each node identifier.

2) Mulri-bit tries

We now extend our evaluation of HEXA to multi-bit tries
where tree bit-maps are used to represent the multi-bit nodes.
Notice that when HEXA is used for such tries, the bit-masks
used for the tree bitmap nodes are not affected; only the
pointers to the child nodes are replaced with the child’s
discriminator. The first design issue in such ftries is to
determine a stride which will minimize the total memory. We
accomplish this experimentally by applying different strides to
our datasets and measuring the total fast path memory. The
results are reported in Figure 6. Clearly, strides of 3, 4 and 5
are the most appropriate choices, when HEXA is not used.
When HEXA is employed, large strides no longer remain
effective in reducing the memory. This happens because a uni-
bit HEXA ftrie requires just 2-bits of discriminator to represent
a node, thus there is little room for further memory reductions
by representing a subset of nodes with a bitmap. In fact, with
increasing stride, the bitmaps grow exponentially and quickly
surpass any memory savings achieved with the tree bitmap
based multi-bit nodes.

Note that smaller strides may not be acceptable in off-chip
memory based implementations. However, in an embedded
implementation such as pipelined trie [26], small stride may
enable higher throughput, as reported in [27]. This happens
because with small stride, one can employ much deeper
pipelines and each pipeline stage can be kept compact and fast.
3) Incremental Updares

We now present the results of incremental updates on tries
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represented with HEXA. In our experiments, we remove a
node and add another to a HEXA trie, and then attempt to find
a mapping for the newly added node. The general objective of
triggering minimum changes in the existing mapping is
achieved by finding the shortest augmenting path in the
memory mapping graph, between the newly added node and
some free memory location (as described in Section I1.C). We
find that the shortest augmenting path indeed remains small,
thus a small number of existing nodes are remapped. In Figure
7, we plot the probability distribution of the number of nodes
that are remapped during an update. It is clear that no update is
likely to take more than 19 memory operations and a large
majority of updates require less than ten memory operations.
Thus, update operations in a HEXA trie can be carried out
quickly, irrespective of the trie shape and update patterns.

B. Results on Strings

In this section, we report the results obtained from the
experiments in which we use bHEXA to implement siring
based pattern matchers. We have obtained the string sets from
a collection of sources: peptide protein signatures [25], Bro
signatures [20], and string components of the Cisco security
signatures [21]. We have also used randomly generated
signatures whose lengths were kept comparable to the real
world security signatures. These strings were implemented
with Aho-Corasick automaton; in most experiments we did not
use failure pointers as they reduce the throughput. Without
failure pointers, an automaton has 256 outgoing transitions per
node, and may require large amounts of memory. In order to
cope up with such high fan-out issue, we have considered the
recently proposed bit-split version of Aho-Corasick, wherein
multiple state machines are used, each handling a subset of the
8-bits in each input symbol. For example, one can use eight
binary state machines, with each machine looking at a single
bit of the 8-bit input symbols, thereby reducing the total
number of per node transitions to 16.

First, we report the results on randomly generated sets of
strings consisting of a total 64887 ASCII characters. In Figure
8(a), we plot the spill fraction (number of automaton nodes
that could not be mapped to a memory location) as we vary the
memory over-provisioning. It is clear from the plot that it is

difficult to achieve zero spill without using discriminators.
With a single bit of discriminator and less than 10% memory
over-provisioning, spill fraction becomes zero, even when the
bHEXA lengths are limited to 4. Thus, total 3-bits are needed
in this case, to identify any given node: one for its
discriminator and two to indicate the length of its bHEXA
identifier. This represents more than five fold reduction in the
memory when compared to a standard implementation, which
will require 16-bits to represent a node.

Next we report similar results for real world string sets. In
Figure 8(b), we plot the spill fraction for the set of protein
strings, and the strings extracted from the Bro signatures, and
Cisco security signatures. We only report results of those
bHEXA configurations (rumber of discriminator bits and
maximum bHEXA length) that keep the spill fraction at an
acceptably low value. For the Bro strings, about 10% memory
over-provisioning is needed in order to keep the spill fraction
below 0.2%. The spill level corresponds to 11 nodes which
remain unmapped in the automaton consisting of total 58353
nodes. The bHEXA configuration in this case does not use any
discriminator and limits the length to 8, thus total of 3-bits are
needed to identify any given node. For the protein patterns,
again a 10% memory over-provisioning is needed in a
configuration that uses 1-bit discriminator and up to &
characters long bHEXA identifiers. Thus, in this case, 4-bits
are needed to represent a node.

In the Cisco string set containing total 622 strings, there was
one string that consisted of \x04 ASCII symbol repeated 50
times, which creates up to 50 states with identical bHEXA
identifiers. This is precisely the issue that we have described in
Section IILC. With restricted bHEHA length and limited
discriminator bits, it is impossible to uniquely identify each of
the resulting 51 nodes. Consequently, in a configuration where
we employ 4-bits per bHEXA identifier, 35 nodes remain
unmapped even if we arbitrarily increase the memory over-
provisioning (refer to third set of vertical columns in Figure
8(b)). As we remove this string from the database, we were
able to reduce the spill fraction to 0.1% with no memory over-
provisioning and for an identical bHEXA configuration (last
set of vertical columns in Figure 8(b)).

These results suggest that bHEXA based representations
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for real world string sets, and ¢) random and real world strings with bit-split version of Aho-Corasick.

reduces the memory by between 3 to 5 times, when compared
to standard representations. In our final set of experiments, we
attempted to represent bit-split Aho-Corasick automaton with
bHEXA. We have employed four state-machines, each
handling two bits of the 8-bit input character. To our surprise,
we found that bit-split versions were more difficult to map to
the memory, and requires longer discriminators and bHEXA
identifiers, which increases the number of bits per node. In
spite of employing the techniques we have discussed in section
IML.C (e.g. using superlinear increase in the bHEXA length),
we generally require 3 bits to represent each node of a bit-split
automaton. This represents approximately 2-3 fold reduction
in memory as compared to a standard implementation. The
results are plotted in Figure 8(c).

To summarize, bHEXA based representations achieve
between 2-5 fold reductions in the memory. Such reductions
will not only aid in reducing the on-chip memory but also vield
higher throughput at lower power dissipation levels.

V. RELATED WORK

Please refer to our technical report. Due to the space
limitations, we are unable to include related work here.

VI. CONCLUDING REMARKS

In this paper, we develop HEXA, a novel representation for
structured graphs such as tries. HEXA uses a unique method to
locate the nodes of the graph in memory, which enables it to
avoid using any “next node” pointer. Since these pointers often
consume most of the memory required by the graph, HEXA
based representations are significantly more compact than the
standard representations. We validate HEXA over two well
known applications, IP lookup and string matching and find
that HEXA indeed reduces the memory by up to five times.
Such reduction levels facilitate the use of embedded memory,
which can dramatically improve the packet throughput and
reduce the power dissipation.
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