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Abstract- Campus and enterprise wireless networks are in-
creasingly characterized by ubiquitous coverage and rising traffic
demands. Lfficiently assigning channels to access points (APs)
in these networks can significantly affect the performance and
capacity of the WLANs. Ihe state-of-the-art approaches as-
sign channels statically, without considering prevailing traffic
demands. In this paper, we show that the quality of a chan-
nel assignment can be improved significantly by incorporating
observed traffic demands at APs and clients into the assignment
process. We refer to this as traffic-aware channel assignment.
We conduct extensive trace-driven and synthetic simulations and
identify deployment scenarios where tratfic-awareness is likely to
be of great help, and scenarios w~here the benefit is minimal. WXe
address key practical issues in using traffic-awareness, including
measuring an interference graph, handling non-binary interfer-
ence, collecting tratfic demands, and predicting future demands
based on historical information. We present an implementation
of our assignment scheme for a 25-node WLAN testbed. Our
testbed experiments show that traffic-aware assignment offers
superior network pertormance under a wide range ot real
network configurations. On the whole, our approach is simple
yet effective. It can be incorporated into existing WLANs with
little modification to existing wireless nodes and infrastructure.

I. INTRODUCTION

Enterprises and university campuses are deploying WLANs
at a remarkable rate and effectively managing such networks
has become increasingly important. The broadcast nature of
wireless communication makes the task of supporting good
end-user experience very difficult. Emerging trends such as

rapidly growing densities and increasing traffuc volumes only
exacerbate this problem (see [13] for a detailed analysis).
Traditionally, careful channel assignment has provided some

respite to end-users. In the common case, network adminis-
trators conduct detailed site surveys and manually try various
configurattions to determ~ine the right channel anid placemenit
for APs. The state-of-the-art research [1 6] [1 8] also offers
similar static solutions. While there are other solutions for sup-
porting better performance in dense deployments [3], channel
assignment is attractive because it is simple and clients do not
need to~be mo~dified.

Unfortunately, existing approaches to channel assignment
are insufficient for enterprise WLAN deployments and usage
patterns. Indeed, recent work has shown the traffic volumes in
a WLAN can vary significantly both across APs and across
time [13]. In the future, as more devices and newer appli-
cations contend for wireless access, the variability in traffic
will increase further. Due to traffic variability in current and
future networks, the performance of static channel assignment
is bound to suffer.
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Researchers in the wire-line world faced a similar problem
when static routing weights were proven to be insufficient
for achieving robust intra-domain routing. Several researchers
advocated that routing weights be tuned to observed traffic
demands [6]. [7], [28]. Motivated by the vast success of these
approaches in the IP world, our paper asks the following
question: Docs thc qaality of a channel assignmcnt improve
whcn dynamic traffic demands in the WLAN are taken into
accoant?

To answer this question, we develop and systematically
study the notion of traffic-aware channel ass ignnient for
WLANs. Our approach is simple. at regular intervals, collect
traffic demand information and use it to determine the channel
assignment. We espouse traditional channel optimization oh-
jectives and show how they can be modified to incorporate the
WLAN traffic demands. Of course, computing optimal channel
assignments for traffic-aware objectives is NP-Hard. Hence,
we develop simple techniques (based on simulated annealing)
for quickly computing close-to-optimal assignments. We show
these channel assignments can closely track the prevailing
network conditions.

To be effective, we must address a few practical issues.
(1) The effectiveness of a channel assignment depends on the
availability of an accurate interference map for the WLAN.
Since wireless signal propagation and interference patterns are
hard to predict using simple heuristics [I], we directly measure
wireless interference using active probes. This is done at
coarser time-scales than the collection of demand information.
(2) While existing work assumes binary wireless interference,
we find that in real networks interference across links may
not be binary (e.., two senders may carrier sense each other
intermittently due to variation of RSS). We present simple and
effective channel assignment schemes for handling non-binary
interference. (3) Our approach requires timely and accurate
estimation of traffic demands. For this, we simply leverage
the SNMP netw ork usage statistics that most APs expo'rt.
In addition, we develop simple approaches for predicting
upcoming traffic demands using only historical SNMP samples
and extend our traffic-aware channel assignment algorithms
to use these predicted demands. (4) Finally, we address the
issue of the overhead experienced by clients when their APs
switch channels frequently due to fluctuating traffic loads. We
describe and evaluate a suite of simple approaches to minimize
this overhead.
On the whole, the traffic-aware approach we propose re-
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quires few modificauions to exisuing wireless nodes and infras-
tructure. It is effective and simple to use. In our evaluation,
we first conduct extensive simulations over real topologies
and traffic demands (available publicly at [15] and [8]), as
well as over several syntbetic settings. We start by considering
a setting where perfect information about current and future
demands is available. These baseline analyses help establish
the potential benefits of traffic-aware channel assignment
algorithms. Our simulation results show that being traffic-
aware could substantially improve the quality of a channel
assignment in terms of to~tal netwo(rk throughput. The exact
level of improvement from traffic-awareness depends on the
deployment scenario, e.g. the density of wireless nodes, the
traffic volumes, and the spatial distribution of traffic demands.
Our key finding is that traffic-awareness offers the most
benefit wben the demands in a WLAN are higbly skewed.
We investigate tbe quality of traffic-aware assignments that
are computed using predicted demands, and find that their
performance is mostly within 5% of the ones obtained with
access to perfect information. In addition, we also inject
artificial errors into traffic demands, and our evaluation shows
traffic-aware channel assignment is robust against these errors.

Finally, we implement and evaluate the traffic-aware channel
assignment algorithms in a 25-node wireless testbed, deployed
on two floors of an office building. We find that traffic-aware
channel assignment is effective in real wireless networks under
a range of network configurations. It benefits both TCP and
UDP flows. Traffic-aware assignment also interacts well with
multi-rate adaptation by reducing interference and allowing
data communication to use higher data rates. In addition, we
find that traffic-aware cbannel assignment not only improves
average network performance, but also helps avoid highly
inefficient channel assignments that could arise from traffic-
agnostic approaches.

II. RELATED WORK

Assigning channels to APs in WLANs has been a static,
one-time approach [14]. First, network administrators conduct
an "RF site survey" of the campus and determine the loca-
tion and number of APs for adequate coverage, Then, tbe
administrators manually configure the APs with 802 11 's non-

overlapping channels to ensure that close-by APs operate on
different channels when possible. Our work shows that such
static approaches can result in poor performance in the face
of shifting traffic demands.

Tbere are several researcb proposals for channel assignment
in campus WLANs [16], [B8]. Unlike our paper, none of
them consider the benefit of tailoring the channel assignment
to prevailing traffic demands. For example, Lee et. al [16]
advocate identifying "expected bigh-demand points" in a given
WLAN deployment and assigning channels to maximize signal
strength at the demand points. This is still a static approach.
Mishra et. al [18] argue that clients have a better view of inter-
ference (since interference directly impacts their performance),
and therefore channel assignment must take client-side views
of interference into account. However, this approach only takes

client locations into account and assumes that all wireless
nodes exhibit the same level of activity at all times.

Recently, several "spectrum management" products have
been developed to automate channel assignment in WLANs.
Some perform dynamic channel selection based on the current
operating conditions (e.g. AutoCell [5] and AirView [4]).
Others also offer interference mitigation via transmit power
control and load balancing across APs. Due to tbeir proprietary
nature, little is known about the design of tbese products
and the operating conditions they work best under. Our work
pmovides a thorough analysis o~f these issues fo~r traffic-aware
channel assignment.

Next, we briefly review IP traffic engineering approacbes
and discuss how they motivate our work. Traffic demands
have been shown to have tremendous utility for network
provisioning and route optimization in ISP networks [6], [7],
[28]. A wide range of traffic engineering approaches bave
been developed to incorporate traffic demands. At a bigh
level, these approaches maintain a history of observed traffic
demand matrices and optimize routing for the representative
traffic demands extracted from the observed traffic during a
certain history window. Tbey differ in how tbe representative
demands are derived. Inspired by tbese results from the
IP wire-line world, we ask whether being traffic-aware has
similar benefits for managing wireless network spectrum. We
develop a parallel set of approaches for deriving traffic demand
information in WLANs.

III. TRAFFIC-AWARE CHANNEL AsSIGNMENT

Tbe goal of cbannel assignment is to ensure that wireless
nodes belonging to interfering Basic Service Sets (BSSs)
operate on distinct channels whenever possible. A wireless
BSS includes an AP and all clients associated with it. An
entire BSS must operate on a single channel, and only nodes
belonging to different BSSs can interfere.

Given that modern 802.11 wireless technologies offer very
few non-overlapping channels (e.g. both 802.1 lb and 802.1 Ig
offer 3 such channels: 1 6, and 1), channel assignment can

essentially be viewed as an optimization problem- wbat is the
best way to allocate the available channels to BSSs so as to
optimize a given metric or objective?
A good optimiization metric should satisfy two important

conditions. (i) it should be easy and efficient to compute
given a channel assignment, and (ii) it should reflect WLAN
performance. In Section III-A, we present an overview of
metrics commonly used in channel assignment. We argue
that these metrics suffer from key dra"wbacks and, therefore,
fail to satisfy condition (ii) above. In order to address these
drawbacks, the metrics should be traffic-aware, i.e. they should
capture prevailing traffic demands in the WLAN. In Sec-
tion 111-A we show how to construct traffic-aware metrics.

Choosing an appropriate optimization metric is only part
of the problem. Computing the optimal channel assignment,
even for the simplest metrics, is known to be NP-hard [18].
In Section III-B, we develop efficient beuristics for computing
close to optim-al assignments for traffic-aware metrics.
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A practical implementaaion of traffic-aware channel as-

signlment must address a few key challenges such as how
to measure wireless interference, how to cope with realistic
wireless interference patterns, and how to measure and predict
traffic dernands.We discuss and address these challenges in
Section 111-C. Finally, we summarize the traffic-aware channel
assignment approach using a flow-chart in Section 111-D.

A. Optimization Metrics for Channel Assgnmient
It is appealing to directly use wireless network performance,

such as throughput or delay, as optimization metrics. However,
modeling wireless network performance is hard hecause inter-
ference is complicated and difficult to model. In this paper, we
focus on the "channel separation" metric, which maximizes the
difference in the channels of interfering nodes. This metric
is simple to compute and reflects the goal of minimizing
interference. While we apply traffic-awareness to the "channel
separation" metric, we helieve that traffic-awareness can he
equally applicahle to other optimization metrics to provide
more efficient channel assignments.
The channel separation metric is computed as follows:

Let C, denote the channel assigned to AP i.Also, if
APs iand j' are within interference range of each other,
define Separation(i,) minjCi Cj,) otherwise
Scparation(i,j 5. We use 5 as an upper-hound of channel
separation hecause channels f, 6, 1 1 in 802.1 lhb/g are consid-
ered orthogonal. Furthermore, separation values hetween 0 and
5 can he used to support partially-overlapping channels. Our
evaluation focuses on orthogonal channels, and [20] can he
consulted for a primer on partially-overlapping channels. Let
A denote the set of APs. Then the channel separation ohjective
islw'IzetA~ 'eaa Io(,jd). This metric is

easy to compute given the interference graph.
However, this metric fails to reflect the performance of the

network due to two reasons: (1) The metric ignores whether
wireless nodes are active. In fact, the nodes are assumed to
always he active. In practice, some wireless nodes are more ac-
tive than others. Since the numher of availahle non-overlapping
channels is very small (only 3 in 802.1 lhb/g), incorporating the
activity of nodes can result in hetter channel assignments. (2)
Furthermore, the metric ignores clients completely. In practice,
minimizing interference introduced hy client transmissions is
also important. Our analysis of real wireless traces shows that
clients transmit a significant volume of traffic. As we show
later, these two drawhacks result in poor channel assignments
in terms of overall network performance. Due to the ahove two
properties, wye refer to~the traditio~nal metric as traffic-aignostic
client-agnostic.

1) Client-awareness.- When the interference graph induced
hy clients is availahle, client-aware channel assignment he-
comes possihle. The corresponding metric is. Mfaximizc
~AUBB B~~j}ScoaratioTI(i j' Here B denotes

the set of clients in the network. Also, nodes i, jin the sum
must helong to different BSSs. This metric is designed to
capture the channel separation hetween any two interfering
APs, any two interfering clients that are associated with

different APs, and an interfering AP-client pair. Note, however,
that the metric is still traffic-agnostic. Mishra et. al [18]
propose a traffc-agnostic, client-aware metric similar to this.

2) Traffic-awareness.- The previous two metrics do not
take into account the actual traffic volumes or periods of
activity of individual clients and APs. Thus, these metrics
may force interfering hut relatively inactive APs or clients
to operate on non-overlapping channels, whereas a smarter
channel assignment would have re-used these channels to
mitigate interference at other active network locations.

In order to verify ibat traffic varies across BSs we exam-
mned the traffic demands at APs from puhlicly-availahle traces
(circa 2004 [13]). While we omit the details for hrevity, we
found that traffic volumes could vary suhstantially hoth across
APs and across time [26]. We ohserve a similar variation
among client traffic. Such variation prevents traffic-agnostic
metrics from fully exploiting the capacity of the wireless
medium.

Incorporating traffic volumes and the activity of wireless
nodes requires a simple change to the traffic-agnostic metrics.
Before outlining this modification, we define the term demand
informally. The sending demand of a node is the aggregate
amount of data (excluding link-layer ACKs) it wishes to
transmit per unit time. In the case of a client, there is a single
recipient- its AP, in the case of an AP, all of its clients could
he recipients. Similarly, the receiving demand is the amount of
data (excluding link-layer ACKs) the node wishes to receive
from various transmitters.

To incorporate traffic-awareness into channel assignment,
we simply need to ensure that interfering nodes with high
individual demands (specifically the BSSs containing such
nodes) are assigned to non-overlapping channels. However, to
ohtain an effective channel assignment, we must understand
how the send and receive demands of interfering nodes affect
each other. Ohserve that whenever two nodes A and B are in
interference range, the transmissions of one node will affect
not only the transmissions at the other node hut also the
receptions at the other node. The former effect is a mani-
festation of 802. 11's carrier sense and hack off mechanisms.
The latter occurs due to packet collisions that can arise in
hidden-terminal settings.
U sing this insight, we scale the channel separation hetween

A and B with the following 'weight". WA,B =SA X SB
SA xRB +SB BA, where S is the send demand, and R is the
receive demand. Intuitively, if we ahuse notation and let SA
(BA) denote the fraction of time As transmissions (receptions)
acquire the medium, the first term reflects the pro~bability oif A
and B's transmissions interfering with each other. The second
(third) term reflects the prohahility of A's (B's) transmissions
interfering with B's (A's) receptions.

Using the ahove weights, we can define the following traffic-
aware. client-agnostic metric. VlaxiTnize 7EiG,0 WJ X

Separation(m ij)
Similarly, we can define a traffic-aware, client-aware

metric: MIaximizcijAUB,BSS(i BSS(j)WiJX
Separation(i, j
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B. Eeficient Algorithms for Compating Channel Assignments

Since optimizing a channel assignment is NP-hard, we
use simulated annealing (SA) [27] to obtain near-optimal
assignments for each metric. SA is appropriate in this context
since it can iteratively improve the solution while avoiding
being stuck in local optima. To speed up convergence and
achieve good performance, we use an informed initialization
algorithm that is inspired by Chaitin's approach to the register
allocation problem [ 1 1 ].

1) Initialization Algorithms.7 We first describe an initial-
ization algorithm that does not consider traffic demands and
treats every node equally. Then we extend it to account for
different traffic demands at each node. The initialization does
not take clients into account, irrespective of whether the metric
in question is client-aware or client-agnostic. When client-
aware metrics are used, we rely on SA in Section III-B.2 to
effectively incorporate client-side information.

Figure 1 shows the algorithm for the traffic-agnostic case.
The intuition of the algorithm is to defer channel assignment
for APs that have many conflicts with other APs. For such
APs, the choice of the channel is very important and more re-
strictive, as it depends on the channels assigned to neighboring
APs. Also, when an AP has few conflicts, we have a greater
amount of flexibility in assigning channels. For such APs, we
can even assign channels without knowing the channels chosen
for the neighbors. In this algorithm, K refers to the number of
non-overlapping channels.

1) Construct a conflict graph G for APs in the WLAN, where
there is an edge between any two nodes if they interfere.

2) For any vertices in the conflict graph with degrees smaller
than K, choose the one with maximum degree and delete it
and its associated edges from the graph and push it onto a
stack. Repeat until no vertices with degree less than K remain.

3) If the resulting graph is non-empty, choose the vertex with
maximum degree and remove it from the conflict graph and
push it onto the stack. Go to step 2.

4) For all the vertices on the stack, pop one vertex at a time,
add it back to the graph, and assign it with a channel that is
different from all its neighbors up to this point.
If a vertex cannot be assigned, mark it.

5) For the marked vertices, assign them a channel that results in
minimum interference, where interference is calculated as the
number of interfering APs assigned the same channel.

Fig. 1. Initialization algorithm for channel assignment.

To extend the initial assignment to the traffic-aware case, we
do the following: First, we modify the degree used in step #2
and #3 by weighing it with total traffic as follows: degree(')

interfere(i ,j where interfere(i, j)= if i and j
are not in interference range; interffe(re(j) set( )+

recv( otherwise. Note sent( and recvf are sent and
received traffic at node j normalized by the link bandwidth
Second, in step #5, we assign marked vertices with a channel
that results in minimum interference where the interference
at node from node j is defined as raterfererceC(,J)
0 if i and j are on separate channels or not in interference
range, otherwise tnterference(r j sent(j recv(j We
then choose the channel that results in the minimum value of

interference(i,) summed over all j C A and j i.
2) Further Improvement via SA.: We further improve the

initial channel assignment obtained above by using an iterative
search. We have compared several options for the search,
including random walk, SA, and greedy search. We found that
SA offers faster convergence and better assignment.
SA is inspired by the metal annealing process. In each

iteration, we randomly assign one of the APs (and its clients)
to a different channel. If the new assignment is better, we
update the current assignment to the new one. Otherwise, we
update the current assignment to the new one with the proba-
bility ( ) T where T is the current temperature, and
fn, and fc,r, are the values of objective functions under
the new and current channel assignments. The temperature
gradually decreases so initially we are more likely to accept
a worse solution and avoid being stuck at local optima. As
the temperature approaches 0, we progressively move in the
direction of improving the objective function. We set the initial
temperature to 10, and each iteration reduces temperature
to 0.999 of the current value. We use 1000 iterations and
the output is the best solution over all iterations. We note
the execution time of this approach is sufficient for practical
WLAN settings (e.g., for the traces we study, it takes well
under 1 second for SA to compute the optimized metric).

C Practical Issues

We address several practical issues in channel assignment.
1) Measuring the Interference Graph: The effectiveness

of a channel assignment depends on the availability of an
accurate interference map. Four measurement and modeling
techniques [1] [25] [22] [2] have been proposed recently
to estimate wireless interference. The first three schemes
are based on the maximum throughput measurement when
one or two links are active, while the last scheme sends
coordinated probes at specific time instances, which intro-
duces lower traffic overhead but requires fine-grained time
synchronization. The first scheme [1] directly measures link-
based interference using broadcast probes. The second and
third schemes [25] [22] improve the scalability of the first
approach by developing an interference model based on RSSI
measurement. Each sender sends a series of broadcast probes,
and all other nodes measure the received signal strength. Then
a model is used to estimate the sending rate based on received
signal strength and carrier sense threshold, and estimate the
delivery rate based on SNR. In this way, only O(N) broadcast
probes are required for measuring interference in an N node
network. The two schemes differ in the type of interference
they can model - [25] works for pairwise interference and
broadcast transmissions, whereas [22] works for pairwise
and non-pairwise interference and for broadcast and unicast
transmissions. The fourth scheme, proposed by [2], sends
coordinated probes from APs to clients For example APs
Al and A2 estimate the interference on links Al -Cl and
A2 -C2 by sending a probe on Al -Cl and then sending
a probe on A2 -C2 at the same time when Cl sends an
ACK to Al. If Cl's ACK is not received, it indicates the
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two links interfere, otherwise, they do not interfere. To further
enhance the robustness of this approach (e.g., packet collision
caused by an accidental transmission from somewhere else,
or data and ACK transmission time is slightly different), one
can measure multiple times and use consistent collisions as
the indication of interference.

Channel assignment and interference estimation are orthog-
onal. In our evaluation, we use the first approach due to
its simplicity, but our channel assignment approaches can
be directly combined with and benefit from other scalable
and accurate interference measurement techniques. In the first
scheme, we have one node, say A, broadcast packets as fast
as it can for 1 minute. Let RA denote A's broadcast rate
when it broadcasts alone. Then, we have two nodes, say A
and B, broadcast simultaneously as fast as they can for 1
minute. RAB denotes A's broadcast rate when A and B are
simultaneously sending. Similarly, RBAB denotes B's broadcast
rate when A and B are simultaneously sending. We then
compute BR RA= .R When BR is close to 1, it means
that nodes A and B do not interfere. When BR is close to
0.5, it means that these two nodes take turns in transmitting
packets and hence interfere with each other. Any values in
between indicate different degrees of interference.

2) Handling Non-binary Interference: Wireless interfer-
ence in real networks may not be binary and converting
BR into a binary metric loses accuracy. Thus, we extend
our channel assignment approach to work with the measured
BR. Figure 2 outlines our extension. As it shows, we first
convert BR to a value ranging from 0 to 1, where 0 indicates
no interference, I indicates complete interference, and any
values in between indicate partial interference. This value
only depends on the locations of nodes A and B, so it is
called Loclnterf. In addition, we also compute interference
across channels based on their channel separation, which is
referred to ChannelInterf . As Loclnterf, ChannelInterf
ranges from 0 to 1, where 0 means no interference, 1 means
complete interference, and other values in between means
partial interference due to partially overlapping channels. The
final interference metric is the product of Loclnterf and
ChannelIIterf. The traffic-agnostic, client-agnostic assign-
ment aims to minimize iJ A OverallInterf (i,j), and the
traffic-aware, client-agnostic assignncent ainnms to miniinize
Zi jgAOverallInterf (i,J) W(i,j), where W(i, j) = Si x

S3 + S, x RB + S. x Ri as defined in Section III-A.2. Similar
modifications apply to the client-aware metrics. Under binary
interference the above non binary objectives are the same as
the channel separation metrLs defined in Section III A. Our
simulation evaluation uses the channel assignment for binary
interference, since NS 2 only has a binary interference model.
Our testbed evaluation uses the channel assignment for non-
binary interference and we observe it out-performs the binary
interference-hased assignment due to the presence of non-
binary interference in real networks.

3) Estimating Traffic Demand Information The computa
tion of traffic-aware metrics requires current WLAN demand
information. We approximate this using SNMP statistics.

BR = min(l, ma(O.5, BR)); // ensure BR within range 0.5 .

Loclnterf = 2 -2 x BR,; map BR to range 0 .. I
ChannelDiff = mirn(( C - Cj 1, 5);
Channellnterf = (-ChannelDiff * 0.2;
Overalllnterf = Channellnterf * Loclnterf;

Fig. 2. Handling non-binary interference.

Enterprises routinely employ SNMP-based [10] tools to
monitor and manage their WLANs. Most commercial APs
export an SNMP management interface that provides the
following byte counts every five minutes: (1) bytes sent by
the AP (IfOutOct); (2) bytes received at the AP (IQjnOct);
and, (3) the number of active clients currently associated with
the AP (NumClients). To illustrate, we can calculate the send
demands of APs and clients as Send AP Demnand [t -5, t]
If 0utOct(t) If OutOct(t 5 and Send ClientDenLTandtA(t)
5 t] = , I

. Receive demands can beIA(t eNumClierts t)
computed in a similar fashion. We note it is possible to obtain
finer grained per-client demand information by correlating
SNMP, syslog, and tcpdump statistics [17].

4) Predicting Traffic Demands: Traffic-aware channel as-
signment accurately reflects network performance only when
current demand information is available. In practice, we can
only use past information to predict the traffic demands at cur-
rent or future time intervals. To address this issue, we present
simple algorithms for estimating future demands based on
historical measurements (e.g., the previous SNMP data). We
can then use these predicted demands in channel assignment.
We must address two important issues: (1) How to use

historical data to identify trends in demands and to predict
future demands with reasonable accuracy? (2) How to enhance
the robustness of the resulting assignment against significant
variation in traffic demands? Next, we present a family of prac-
tical traffic-aware algorithms for channel assignment. These
algorithms offer varying degrees of trade-offs between these
issues, and we evaluate them in Section V.

Exponentially-Weighted Average (EWMA). This approach
predicts AP demands at time t by using a weighted moving av-
erage of demands in previous intervals. More recent demands
are given larger weight: Denrr Pred (t) = w Denrt Actual (t-
1)+ (1 -w) DeCT Pred(t- 1). We set the weight w = 0. 9. We
use EWMA to first estimate the AP demand and the number
of active clients. Then we combine the two estimates to derive
the predicted client demands.

Optimal for the Previous Interval (PREV). Here, the
channel assignment for time t is simply the optimal channel
assignment for the traffic demands in time t -1 (or the
most recently sampled time interval, if tbere are no samples
available for t -1) In other words PREV is simply EWMA
with w . PREV is more sensitive to short term traffic
fluctuations than EWMA

Optimal Over a Time Window (PREV N). There are sev-
eral traffic patterns where PREV could be ineffective e.g
periodic bursty traffic. Our next approacb, PRE_N, tries
to address this drawback by simultaneously optimizing the
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assignment for all traffic demands observed over a history
window. Given an optimization metric, PREV N will derive
a channel assignment that maximizes the total value of the
metric for the traffic demands from the past N intervals:
Optimiee Aletric(Deomands(t -i)).

Peak Demand in a Window (PEAK-N). This is a variant
of PREV N: Instead of optimizing for all sets of demands
in a time window, PEAK N obtains the optimal channel
assignment for the "worst-case" demand-set within the history
window. This allows the channel assignment to be more re-
sponsive to sudden increases in aggregate network utilization.

5) Limitations: The traffic-aware metrics do not capture
multi-rate adaptation. Incorporating this factor can complicate
matters because it requires real time measurement of the
received signal strength and/or the rates at clients. Since our
metrics do not capture multi-rate adaptation, we say they
are "rate-agnostic". In Section VI, we evaluate the impact of
ignoring multi-rate using testbed experiments. We find rate-
agnostic traffic-aware channel assignment interacts well with
multi-rate adaptation. When clients and APs are close to each
other, traffic-aware assignment offers similar improvement
with and without multi-rate adaptation This is because in
both cases almost all communications use the highest data
rate. When clients and APs are farther apart, traffic-aware
channel assignment can offer larger improvement under multi-
rate adaptation, because it reduces interference and allows
communication to use higher data rates.

D. Putting It All Together

Mseaslrntreni eI graph

iemndsushing NMP

thenextmierval

I

Qap trataflcawr

NewasignntAnid
a6idoitwnugan

PhangesMhAWel as40#n

Fig. 3. Outline of traffic-aware channel assignment.

Figure 3 summarizes the steps in traffic-aware channel as-
signment. The first step, measuring the interference graph, can
be conducted infrequently (e.g., a few times a day under light
traffic load). All other steps are repeated at the timescale of
collection of traffic demands, e.g., every 5 minutes. The traffic-
aware channel assignment approach requires no modifications
to the clients or the 802.1f1 standard. When clients are will-
ing to cooperate (e.g., by measuring client-side interference
and/or using an efficient re-association scheme described in
Section VII) the benefit of our channel assignment increases
further.

IV. EVALUATION APPROACH

To understand the benefits of traffic-awareness in different
operating conditions, we use two sets of experiments: (1)
First, we conduct simulations using both real and synthetic
traffic demands and WLAN topologies (Section IV-A). While
the simulations allow us to explore the benefits of traffic-
awareness in a range of operating conditions, they abstract
away important real world effects. (2) To account for such
effects, we implement our approach over a modest-sized
wireless testbed and evaluate its performance using several
field experiments. In Section IV-B, we provide details of
our wireless nodes and the traffic demands we imposed in
our testbed experiments. We describe the implementation in
Section VI.

A. Simulation Methodology
We use NS-2 version 2.29 with support for multiple non-

overlapping channels. We use 802.1 lb with 1 1 Mbps medium
bit rate, RTS/CTS enabled, transmission range set to 60 m and
a corresponding interference range of 120 m. We generate
constant bit rate (CBR) UDP traffic at a specified rate with
data packet sizes of 1024 bytes. Unless otherwise stated, the
traffic is bi-directional and symmetric: the send demand at an
AP is same as its receive demand. The traffic generated by
APs is uniformly distributed to all clients. We study the effect
on TCP traffic using testbed experiments (Section VI).

Since these are controlled simulations, we assume that the
locations of all wireless nodes are known and use free-space
propagation models [24] to estimate if two nodes interfere.
In our simulations, all interference is binary. To evaluate
the effectiveness of an assignment, we compute the total
throughput over all connections.

1) Synthetic Scenarios.: First, we use synthetic scenarios
to understand when traffic-aware channel assignment is ben-
eficial. We generate synthetic topologies and traffic traces
using the approach in [18], [20]. Specifically, we generate
topologies that consist of 50 APs and 200 clients in a given
area. Like [18], [20], we generate 15 random topologies, where
each client has 4 APs on average in its communication range.

Different from [18], [20], we generate two types of CBR
traffic to investigate how traffic distribution affects traffic-
aware assignments. The two types of demands are (i) uniform
random traffic demands and (ii) hotspot traffic demands. In
uniform random traffic, each AP is randomly assigned a
demand from 0 to the maximum CBR throughput on a wireless
link (3.6 Mbps for our NS-2 settings). In hotspot traffic
demands, a specified number of hospots' are created. Each
hotspot is formed by randomly selecting an AP and all other
APs within its communication range. All APs in the hotspots
have traffic demands uniformly distributed between 0 and
3.6 Mbps, and all other APs have traffic demands uniformly
distributed between 0 and 10 Kbps.

2) Trace-driven Simulation. In addition to synthetic sce-
narios, we also conduct trace-driven simulations over two
publicly available wireless data sets from CRAWDAD: the
first was collected at Dartmouth College [13], [15] in 2004
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and the second dataset was collected at the IBM T.J. Watson
Research Center [8] in August 2002. These simulations allow
us to explore the benefits of traffic-awareness in real WLAN
deployments with real traffic patterns.
Dartmouth Traces. We analyze the data collected between
Feb. 10 and Feb. 12, 2004. Our analysis focuses on two
buildings - "ResBldg94" and "LibBldg2" - containing 12 and
20 access points, respectively. Other buildings of similar type
(e.g. other ResBldg's) have fewer access points.
The Dartmouth traces include SNMP statistics and the

number of active clients per AP saimpled every 5 miniutes
at all APs. We use the SNMP statistics and client-AP as-
sociation information to derive AP and client-side demands
(in Mbps) for every 5 minute interval. In addition, the data
contains geographic coordinates for the APs. There is no client
location information, so we assume that clients are randomly
distributed around their APs within a circle of radius 20m.
IBM Traces. The IBM traces also contain SNMP statistics
and the number of active clients per AP for three different
buildings: "SBldg', "MBldg' and "LBldg". We focus on
"MBldg", which has 33 APs. Unlike the Dartmouth data, we
did not have the locations of the APs. Instead, we constructed
synthetic coordinates for the APs by placing them at hand-
picked locations in a 5-storied building spanning a 235x100m
lot. We analyze the data collected between Aug 11, 2002 and
Aug 13, 2002.

Our trace-driven simulations progress in rounds, where
a single round covers an SNMP interval. Within a round,
we apply the channel assignment algorithm, as described in
Section III-B, to optimize the channel separation metrics.
To study the benefits of traffic-awareness in our simulations,

we focus on intervals with > 50% simultaneously active APs.
We consider an AP to be active if the total volume of traffic
it sends and receives exceeds 10 Kbps. Also, while trace-
driven simulation captures real usage patterns, its throughput is
limited by the capacity of the current provision scheme (e.g., if
the channel assignment in use was ineffective, the throughput
of the traces would be too low to see benefits of improved
channel assignment). To address this limitation, we scale up
the traffic demands in these intervals (on average, we scale
60X across all buildings). Note the 60X scale is chosen to
ensure the performance is not limited by the capacity of the
existing deployment, even though we also observe benefits of
traffic-aware assignment under much smaller scale-up values.

B. Experimental Approach
In addition to simulation, we also implement the channel

assignment algorithms in a wireless testbed. Testbed evaluation
is valuable because it allows us to evaluate the performance
of different channel assignments using realistic wireless signal
propagation, interference patterns, and multi-rate adaptation
schemes
We set up a wireless testbed that consists of 25 Dell

Dimension ff00 PCs The testbed spans two floors of an
office building. Each machine has a 2 66 GlHz Intel Celeron
D Processor and runs Fedora Core 4 Linux. Each is equipped

with an 802.11 a/b/g NetGear WAG5 11 card using MadWifi.
In our experiments, we use 802.11g. There are 8 APs and
17 clients, with 7 APs having 2 clients and 1 AP having
3 clients. The loss rates from the APs to their clients vary
from 0 to larger values (up to 40%). We run the experiments
late at night to avoid interference with the resident wireless
network. We evaluate both traffic-aware metrics (client-aware
and client-agnostic) against a traffic-agnostic, client-agnostic
baseline. We measure wireless interference in the testbed using
broadcast probes (described in Section III-C. 1) once before the
experiments start and use the same interference graph for all
experiments. This way the quality of a channel assignment is
also subject to temporal variation in the interference graph,
which is more realistic.

ac I
I0.0

,.5
1.0i
1...

ACPi
0.340
0.622
1.000
0.943
0.778

APt2
_0.340 _
0.440 _

0.500
0.943 _
0.778

ACi3 APC4 ACt5 AC 6 ACt7
0.340 0.340 0.340 0.340 0.340
0.359 0.3 11 0.278 0.24 0.235
0.333 0.250 0.200 0.167 0.143
0.333 0.1 0.118 0 4 0.064
0.778 0.195 0.086 0.049 . 0.031

ACP8
0.340
0.220
0.125
0.051
0.022

TABLE I
NORMALIZED ZIPFIAN DEMANDS IN THE TESTBED.

We impose Zipfian demands across the APs in our testbed.
We try several different slopes for the Zipf:curve: a slope ai
means that the top i-th demand is proportional to 1/i, we
vary ca from 0 to 2, where 0 represents uniform demands
and a larger a indicates more skewed demands. The demands
generated from these slope values are listed in Table I. For
each slope value, we evaluate 5 different random mappings
of the generated demands to each AP and report the average
throughput over these 1 minute runs. Each mapping can give a
different traffic-aware channel assignment. We generate either
CBR UDP or TCP traffic from APs to clients with packet
sizes of 1024 bytes. For both types of traffic, we measure the
throughput using nuttcp [21]. We enforce a specified demand
in TCP traffic by utilizing the rate-limiting function in nuttcp,
which places an appropriate upper-bound on TCP's congestion
window. We use the same set of traffic demands for TCP and
UDP and assume these demands are known a priori.

V. SIMULATION RESULTS

We now present our evaluation based on NS-2 simulation.
As mentioned earlier, we quantify the effectiveness of a chan-
nel assignment by computing the total throughput achieved by
all network flows under the assignment. We have conducted
more simulation and testbed experiments than we can present
here. Refer to our techncal report [26] for the complete results.

A Simulations on Synthetic Settings
As described in Section IV A 1 we create two types of

demands to understand the benefit of traffic-aware assign-
ment - uniform and hotspots. Figure 4 shows the cumulative
distribution function (CDF) of improvement of traffic-aware
channel schemes over their traffic agnostic counterparts under
each demand type. The CDF is plotted over the 15 random
topologies that we simulated.
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Fig. 4. Comparison of traffic-aware schemes against their traffic-agnostic

counterparts in synthetic topologies.

The improvement of traffic-awareness is mostly within

15% under uniform demands, whereas the improvement under

hotspots traffic is significantly higher: in 35% of the cases,

the improvement is over 20%, and in 10% cases, the im-

provement is over 50%. The benefit is larger under hotspots

to assign APs with high load to non-overlapping channels;

this significantly increases the overall throughput when the

demands are skewed. Also, we observe the throughput (in

absolute values) is highest when the channel assignment is

both traffic-aware and client-aw are.

In Figure 4(a), there are a small number of cases having

negative throughput improvement under traffic-aware assign-

ments. This is because the current channel separation metric

(even after incorporating traffic and client-awareness) is not

perfect. For example, consid1era setting where two APs do

not interfere with each other but some of their clients do.

The current metric only takes into account the interference

between the clients, and ignores the additional effect of head-

of-line blocking at APs caused by the interference at clients.

We believe that our traffic-aware metrics can be improved

further to correlate more strongly with network performance.

We leave this for future work.

B. Trace-Driven Simulation Results

Next we compare different channel a1ssignments using sim-

ulation based on real traffic traces described in Section IV-A.2.

1) Performance Benefits of Traffic-awareness.- First we

compare the four channel separation metrics assuming that

we have perfect knowledge of traffic demands. Figure 5

shows a CDF of performance improvement of various channel

assignments against a traffic-agnostic, client-agnostic baseline.

Over the three buildings, the average throughput improvement

ranges from 4.0% 5.9% after incorporating client-side infor-

mation alone, it increases to 5.2% 11.5% by incorporating

traffic demands alone; and it increases further to 8.3-12.8% by

incorporating both traffic demands and client-side information.

As in the synthetic case, the extent of improvement is

traffic-dependent. When traffic is more evenly distributed, we

see little improvement from traffic-aware assignments. When

traffic is more heterogeneous, the improvement is larger. For

instance, we compute the classic lain's fairness index for

demands corresponding to the interval with the maximum

improvement of 40% and for the interval corresponding to the

median improvement of 10% in the ResBldg94 trace, where

lain's fairness index is defined as (Xil TI * X' for

demands x1 ..rx We note that the fairness in the former case

is almost one half of the fairness for median case demands.

This further confirms the more imbalanced the traffic demands,
the larger the benefit from using traffic-aware assignment.

Figure 6 compares the performance improvement of the

two traffic-aware metrics against their traffic-agnostic counter-

parts. Over the three buildings, the average improvement of

the traffic-aware, client-agnostic metric over traffic-agnostic,

client-agnostic ranges from 5.2-11.5%, whereas the aver-

age improvement of traffic-aware, client-aware over traffic-

agnostic, client-aware ranges from 2.3-8.6%. The former im-

provement is larger because the baseline performance is worse.

The largest improvement from traffic-awareness is around 35%

for ResBldg94 and around 250 for LibBldg2.

40 30
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c- 20
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Fig. 6 Comparison of various traffic-aware schemes against their traffic-

agnostic counterparts. Results from IBM's MBIdg are omitted for brevity.

Approach Fairness

ResBIdg LibBidg MBIdg

Traffic-agnostic/client-agnostic 0.89 0.87 0.85

Traffic-agnostic/client-aware 0.91 0.89 0.87

Traffic-aware/client-agnostic 0.89 0.90 0.86

Traffic-aware/client-aware 0.91 0.91 0.87

TABLE

IMPACT 0F TRAFFIC-AWARENESS ON FAIRNESS

2) Fairessc Next we ask how traffic-awareness affects fair-
ness. We consider the ratio of the actual throughput obtained
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Fig. 7. Mean and median improvement of the traffic-aware, client-agnostic
metric against its traffic-agnostic counterpart as a function of density for
ResBldg.

at the AP to its original demand and compute Jain's fairness
index over this ratio for all individual flows. As summarized
in Table II, all the algorithms result in similar fairness. This
suggests that traffic-aware assignment improves throughput
without compromising fairness.

3) Impact of Zipf-distributed Demands, So far we have
considered when the demand of an AP is equally distributed
across its clients. A number of studies show that realistic user

demands often exhibit Zipf-like distributions [9], [12]. So next
we compare various channel assignment schemes against a

traffic-agnostic, client-agnostic channel assignment approach
when the AP's demand is distributed across its clients accord-
ing to a Zipf-distribution. Note that the total traffic rate to
and from each AP is the same in both cases. While we omit
the figure for brevity (see [26] for details), compared with
Figure 5(a), we observe the relative performance of the various
algorithms is similar.

4) Impact of Network Density: We now study the rela-
tionship between the density of a WLAN deployment and
the benefits of traffic-awareness. Figure 7 shows the perfor-
mance improvement when we vary transmission range, and
consequently, the average number of interfering AP pairs.
The improvement first increases with density and then de-
creases. When the network density is low, very few APs
interfere with each other and all channel assignments yield
similar throughput. When network density is higher, a better
channel assignment can allow more nodes to simultaneously

transmit, thereby increasing total throughput. As network
density increases further, all the channels are fully utilized
everywhere, regardless of the assignment, and the benefit of
traffic-awareness is reduced.

5) Evaluation of Practical Traffic-aware Algorithms: In
the previous evaluation, we assume that traffic-aware channel
assignments have perfect knowledge of traffic demands. In
practice, such information is not known a priori, but has to be
estimated. Can the prediction error offset the potential gain of
traffic aware channel assignment?

EWMAPREVPEAK PEAK4

ResB1dg 0.48 0.49 0.70 1.02
LibBldg 0.43 0.47 0.57 0.80

MBdg 076 0.91 1I031 1.25

TABLE III

PREDICTION ERROR
To answer this question, we first compute the error in pre-

dicting traffic demands using various prediction algorithms de-

scribed in Section III-C. We quantify the prediction error using
mean absolute error (MAE), defined as lpredicti actuali

actuali

Table III shows the MAE in predicting the total demand (both
send and receive demands) at the APs. As shown in Table III,

the best prediction algorithm is EWMA, which results in
MAE ranging fromi 0.43 to 0.76. This prediction error is still
quite significant. Large prediction errors are not surprising
since wireless traffic at each AP has low aggregation and
is much harder to predict than traffic in an ISP backbone.
Such high variability in traffic poses challenges to traffic-aware
assignment schemes.
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Fig. 8. Comparisoni of the traffic-aware, client-aware metric against its traffic-
agnostic counterpart using various prediction algorithms in ResBldg94.

Next we evaluate the performance of channel assignment
using predicted demands and compare it with the case where
the true demands are known (the "oracle"). We evaluate the
improvement of the traffic-aware, client-aware metric over its
traffic-agnostic counterpart for ResBldg94 (see [26] for the
results of other traces). The performance of the prediction
algorithms closely tracks that of the oracle. Compared with
the oracle, the degradation of predictive algorithms is mostly
within 6%. Compared with the traffic-agnostic algorithm, the
improvement is still substantial. The median improvement for
the client-agnostic channel assignment is 8.13%, while the
client-aware channel assignment is 5.26%. The performance
degradation for the client-agnostic channel assignment is less
than the client-aware channel assignment because we have to
predict the client-side demands and this further increases the
prediction error for the latter.

Our evaluation suggests that even though wireless traffic
is hard to predict accurately, it is still feasible to apply
traffic-aware channel assignments, since the assignments are

reasonably robust against predictionu errors. The robustness
arises from the fact that traffic-aware channel assignment
does not need accurate demands but only the rough spatial
demand distribution so that it can allocate more channels to
areas that need them most To lend further weight to this
intuition, next we conduct simulations where we introduce
Gaussian errors into demands Figure 9 shows the CDF of
performance improvement of the traffic-aware, client-aware
channel assignment scheme against its traffic-agnostic coun-

terpart when we add errors with different standard deviation
(the performance is similar for the client-agnostic metric [26]).
As we would expect, the performance improvement increases

as the standard deviation of the error decreases. Moreover,
we observe that even when the standard deviation is 0.5, the
performance improvement is mostly close to that under no
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error. This is true for both client-agnostic and client-aware
assignments. These results further demonstrate the robustness
of traffic-aware assignment to a range of possible errors in the
demand information.
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Fig. 9. Comparison of the traffic-aware, client-aware metric against its traffic-
agnostic counterpart under Gaussian distributed errors with mean 0 and a

varying standard deviation.

VI. IMPLEMENTATION AND EXPERIMENT RESULTS

We implement the channel assignment algorithms as fol-
lows. A centralized controller takes the traffic demands and
the interference graph among wireless nodes as the input
and computes channel assignments for the channel separation
metrics defined in Section III. Then the controller disseminates
the new channel assignment to the APs by establishing ssh
connections through the back-end Ethernet connection and
remotely sets the APs' channels using iwconfig. After all
the APs channels have been changed, the controller remotely
starts the nuttcp program with the specified traffic demands
to measure network performance.
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Fig. 1L0. Overall TCP network throughput in 25-node testbed, where the
errorbars show the average and standard deviation.

Figures 10(a) and 10(b) show the overall TCP network
throughput over S runs under fixed-rate and multi-rate, respec-

tively (see [26] for the UDP results). We make the following
observations. First, as we would expect, the traffic-aware,
client-aware metric performs the best, and the traffic-aware,
client agnostic metric out performs the traffic agnostic client
agnost1c metric. econd, the throughput variance of the trafic-
agnostic metric is generally higher than that of the traffic-
aware metrics. This is because the traffic-agnostic metric ig-
nores traffic demands, and different channel assignments may
appear equally good according to the traffic-agnostic metric,
but its actual performance varies significantly depending on

whether the nodes with high demands happen to be assigned
to non-interfering channels.

Figures 10(a) and 10(b) also show the improvement of

traffic-awareness generally increases with the slope a. When

a = 0 (i.e., all traffic demands are the same), the traffic-
aware, client-agnostic metric performs similarly as the traffic-
agnostic, client-agnostic metric. The traffic-aware, client-
aware slightly out-performs both the above metrics by account-
ing for client-side interference. As a increases, traffic becomes
inore concentrated on a slmaller number of nodes and both
traffic-aware metrics see larger improvement. Moreover, the
improvement of traffic-awareness in some cases can be quite
high: we observe up to a 1.69-fold increase for TCP/fixed-
rate, and a 2.6-fold increase for TCP/multi-rate. The benefit of
traffic-awareness is larger under the multi-rate because traffic-
awareness can reduce interference and allow links to operate
at higher data rates.

VII. CHANNEL SWITCHING

Channel switching causes two types of overhead: (i) delay
incurred by an AP to change its channel - switching delay,
and (ii) delay incurred for the clients to associate with the AP
on its new channel - re-association delay. As reported in [19],
the switching delay varies from 200 us on Intel's ProWireless
to 10-20 ms on NetGear Atheros, Cisco Aironet, and Prism
2.5.
The re-association delay depends on the re-association

scheme. A simple approach, which is implemented by Mad-
Wifi, is for wireless clients to scan all channels to find the
AP with the highest RSSI. The re-association delay in this
case tends to be long and is dominated by scanning time.
To reduce this time, an AP can broadcast the new channel
before switching so that the clients can directly switch to
the new channel without performing scanning [23]. To protect
against packet losses, the new channel information can be sent
multiple times.
We refer to the above two re-association schemes as (i)

MadWifi default implementation, and (ii) explicit notification.
We evaluate the overhead of channel switching under these
two re-association schemes using testbed experiments. In
explicit notification, the AP broadcasts its new channel 5 times
before switching to protect against packet losses. Figure 11
summarizes the results of a 10-minute TCP transfer between
an AP and its client using Madwifi's default implementation
and explicit notification, respectively. The UDP performance
is similar and oumitted for brevity [26]. The x-axis tracks how
often the AP changes its channel. To evaluate the impact
of frequent channel switching on different transfer durations,
we use on/off traffic, where both on-periods and off-periods
are exponentially distributed Different curves in the graph

correspond to different average on-periods, ranging from 5
to 300 sec. The average off-period duration is 5 seconds.
The process is repeated until 10 minutes have elapsed. As
shown in Figure 11(a), there is no degradation under the
default re-association scheme when the switching interval
is 2 minutes or higher For smaller switching intervals the
overhead of the default scheme increases. In comparison, as

we can see from Figure 1 '(b)' the overhead under the explicit
notification scheme is negligible for all switching intervals,

including switching once per 20 seconds. These results suggest
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the re-association overhead is negligible under the explicit
notification, even for the default scheme, switching once every
5 minutes, as considered in this paper, incurs no performance
penalty.
An orthogonal approach to further minimizing the impact

of channel switching is to reduce the number of APs that
change channels. There are several approaches we can use.
The first approach is to apply the new channel assignment to
the real network only if it improves the optimization metric
by a threshold 0. The second approach is to use the channel
assignment from the previous interval as the starting point
in the SA search and limit the number of channel switches
by controlling the number of iterations in SA. This will bias
the outcome of the search in favor of assignments that are
only slightly different from the current channel assignment.
Our evaluation results (refer to [26] for details) show that this
approach reduces the number of channel changes without com-
promising the performance. For example, when the number of
SA iterations is limited to 5, the performance improvement is
close to that without this limitation, and on average only 0.84
APs are required to switch their channel per interval.

VIII. SUMMARY

The importance of channel assignment for improving the
efficiency of spectrum usage in WLANs has been well-studied.
Different from the previous work, our work explores the effect
of dynamically adapting the channel assignment to prevailing
traffic conditions. Using extensive simulations and testbed
experiments, we show that traffic-aware channel assignment
approaches could significantly improve the quality of a channel
assignment in practice.
We perform a detailed study of the operating conditions

under which traffic-awareness offers maximum benefit. We
show that the benefits of the approach are tightly coupled to
the deployment environment. For example, traffic-awareness
is most helpful when traffic demands are concentrated at a
small number of heavily-loaded APs located close to each
other The approach is of little use when traffic demands are
uniform across the WLAN or when the WLAN deployment
is too sparse Our testbed experiments show that the benefits
of traffic-awareness extend to both TCP and UDP traffic and
both fixed-rate and multi-rate adaptation.

Our paper establishes the importance of traffic-awareness to
the management of WLANs. Although our focus has been on
campus and enterprise networks, we believe that the central
idea of this paper - traffic-awareness - is widely applicable

to other scenarios such as multi-hop mesh networks and
uncoordinated deployments.
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