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Abstract— Campus and enterprise wireless networks are in-
creasingly characterized by ubiquitous coverage and rising traffic
demands. Efficiently assigning channels to access poinis (APs)
in these neiworks can significantly affect the performance and
capacity of the WLANs. The state-of-the-art approaches as-
sign channels siatically, without considering prevailing traffic
demands, In this paper, we show ihat the quality of a chan-
nel assigiiment can be improved significantly by incorporating
ohserved traffic demands at APs and clients info the assignment
process. We refer to this as traffic-oware channel assignment.
We conduct extensive {race-driven and synthetic simulations and
identify deployment scenarios where {raffic-awareness is likely to
be of great help, and scenarios where the benefit is minimal. We
address key practical issues in using traffic-awareness, including
measuring an interference graph, handling non-binary interfer-
ence, collecting traffic demands, and predicting future demands
hased on historical information. We present an implemeniation
of our assignment scheme for a 25-node WLAN testbed. Our
testhed experiments show that iraffic-aware assignment offers
superior network performance under a wide range of real
network configurations. On the whole, our approach is simple
vet effective. It can be incorporated into existing WLANs with
iifile modification to exisfing wireless nodes and infrasiruclure,

I. INTRODUCTION

Enterprises and vniversity campuses are deploving WLANs
at a remarkable rate and elffectively managing such networks
has become increasingly important. The broadeast nature of
wireless communicalion makes the task of supporling good
end-user experience very difficult. Emerging trends such as
rapidly growing densities and increasing traffic volumes only
gxacerbate this problem (see [13] for a detailed analvsis).
Traditionally, careful channel assigrmens has provided some
resgpite o end-users. In the common case, network adminis-
frators conduct detailed site surveys and manually try various
configurations to determine the right channel and placement
for APs. The state-of-the-art rescarch [16], [18] also offers
similar static solutions. While there are other solutions for sup-
porting betler performance in dense deployments [3], chanmel
assignment is atlractive because it is simple and clients do not
need to be modified.

Unfortunately, existing approaches to channel assignment
are insufficient for enterprise WLAN deplovments and usage
patterns. Indeed, recent work has shown the traffic volumes in
a WELAN can vary significantly hoth across APs and across
time [13]. In the future, as more devices and newer appli-
cations contend for wireless access, the variability in traflic
will increase further. Due Lo frallic varisbhilily in current and
future networks, the performance of static channel assignment
is bound to saffer.
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Researchers in the wire-line world faced a similar problem
when static routing weights were proven to be insufficient
for achieving robust intra-domain routing. Several researchers
advocaled thal routing weighis be tuned to observed irallic
demands [6], [7], [28]. Motivated by the vast success of these
approaches in the 1P world, oor paper asks the following
guestion: Does the quality of a channel assignmeni improve
when dynamic traffic demands in the WLAN are taken into
account?

To answer this question, we develop and systematically
study the nolion of rraffic-aware channel assignment Tor
WLANs. Our approach is simple: at regular intervals, collect
traffic demand information and use it to determine the channel
assignment. We espouse traditional channel optimization oh-
jectives and show how thev can be modified to incorporate the
WIELAN irallic demands. Of course, computing optimal channel
assignments for traffic-aware objectives is NP-Hard, Heunee,
we develop simple technigues (based on simulated annealing)
for quickly computing close-to-optimal assignments. We show
these channel assignments can closely track the prevailing
network conditions,

To be effective, we must address a few practical issues.
(1) The effectiveness of a channel assignment depends on the
availability of an accurate interference map for the WLAN.
Since wireless signal propagation and interference patterns are
hard to predict using simple henristics (173, we directly measure
wireless interference using active probes. This is done &t
coarser time-scales than the collection of demand information.
{2y While existing work assumes binary wireless interference,
we find thal in real networks interflerence across links may
not be binary (e.g., two senders may carrier sense each other
intermitiently due to variation of R88). We present simple and
effective channel assignment schemes for handling non-binary
interference. (3) Our approach requires timely and accurate
estimation of traffic demands. For this, we simply leverage
the SNMP network usage statistics that most APs export.
In addition, we develop simple approaches for predicling
upcoming fraffic demands using only historical SNMP samples
and exlend our traffic-aware channel assignment algorithms
{0 use these predicted demands. (4) Finally, we address the
issue of the overhead experienced by clients when their APs
switch channels frequently due to Quctuating traffic loads. We
describe and evaluate 4 suite of stmple approaches to minimize
this overhead.

On the whole, the traffic-aware approach we propose re-
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quires few modilications to existing wireless nodes and mfras-
tructure. It is effective and simple to vse. In our evaluation,
we first conduct extensive simulations over real topologies
and traffic demands (available publicly at [13] and [8]), as
well as over several synthetic settings. We start by considering
a selting where perfect information about current and fature
demands is available. These baseline analyses help establish
the potential benefits of traffic-aware channel assignment
algorithms. Our simulation resulls show that being traffic-
aware could substantially improve the quality of a channel
assignment in terms of total network throughput. The exact
level of improvement from (raffic-awareness depends on the
deployment scenaric, e.g. the density of wireless nodes, the
trafhic volumes, and the spatial distribation of traffic demands.
Our key finding is that traffic-awareness offers the most
benefit when the demands in a WLAN are highly skewed.
We investigate the quality of traffic-aware assignments that
are computed using predicted demands, and find that their
performance is mostly within 3% of the ones obtained with
access Lo perfect information. In addition, we also nject
artificial errors into traffic demands, and our evaluation shows
raffic-awuare channel assignment is robust agamst these errors.

Finally, we implement and evaluate the raffic-aware channel
assignment algorithms in a 25-node wireless testbed, deploved
om twao floors of an office building. We find that traffic-aware
channel assignment is effective in real wireless networks under
a range of network configurations. It henelits both TCP and
UDP flows. Trallic-aware assignment also interacts well with
multi-rate adaptation by reducing interference and allowing
data communication to use higher data rales. In addition, we
find thal traffic-aware channel assignment not only improves
average network performance, but also helps avoid highly
mellicient channel assignments that could arise from traific-
agnostic approaches.

II. RELATED WORK

Assigning channels to APs in WLANs has been a siatic,
one-time approach [14]. First, network administrators conduct
an “RI site survey” of the campus and determine the loca-
tion and number of APs for adeguate coverage. Then, the
administrators manually configure the APs with 802.11's non-
overlapping chanmels o ensure that cose-by APs operale on
different channels when possible. Our work shows that such
static approaches can result in poor performance in the face
of shifting traffic demands.

There are several research proposals for channel assignment
in campus WLANs [16], [18]. Unlike our paper, none of
them consider the benefit of tailoring the charmel assignment
to prevailing traffic demands. For example, Lee et. al [16]
advocaie identifying “expected high-demand points” in a given
WILAN deployment and assigning channels {o maximize signal
strength at the demand points. This is still a static approach.
Mishra ef. al [18] argue that clienis have a belter view of inter-
ference (since interference directly impacts their performance),
and therefore channel assignment must take client-side views
of interference into account. However, this approach only takes

client locations into account and assumes that all wireless
nodes exhibit the same level of activity at all times.

Recently, several “spectrum management” products have
been developed o automate charmel assignment in WLANs.
Some perform dynamic channel selection based on the current
operating conditions (e.g. AutoCell [5] and AirView [4]).
Others also offer inferference mitigalion via transmit power
control and load balancing across APs. Due to their proprietary
nature, little is known about the design of these products
and the operating conditions they work best under. Our work
provides a thorough analysis of these issues for traffic-aware
charmmel assignment.

Next, we brielly review [P traflic engineering approaches
and discuss how they motivate our work. Traffic demands
have been shown 1o have lremendous ulility for nebwork
provisioning and route optimization in ISP networks 6], [7],
(281, A wide range of traffic engineering approachas have
been developed 1o meorporale traffic demands. At a high
level, these approaches maintain a history of observed traffic
demand malrices and optimize routing for the representative
traffic demands extracted from the observed traffic during a
certain history window. They differ in how the representative
demands are derived. Inspired by these results rom the
IP wire-line world, we ask whether being traffic-aware has
similar henefits for managing wireless network spectrum. We
develop a parallel set of approaches for deriving trallic demand
information in WLANSs,

11, TRAFFIC-AWARE CHANNEL ASSIGNMENT

The goal of channel assignment is to ensure that wireless
nodes belonging o inferfering Basic Service Sets (BSSs)
operate on distinet channels whenever possible. A wireless
BSS includes an AP and all clients associated with if. An
enfire BSS must operale on a single channel, and only nodes
belonging to different BSSs can interfere.

Given that modern 802.11 wireless technologies offer very
few non-overlapping channels (e.g., both 802.11b and 802.11¢g
offer 3 such channels: 1, 4, and 11}, channel assignment can
essentially be viewed as an optimization problen: what is the
best way to allocate the available channels to B55s so as to
optimize a given metric or ohjective?

A good oplimization metric should satisly two important
conditions: (i) if should be easy and elficient to compuie
given a chanmnel assignment, and (ii; it should reflect WLAN
performance. In Section LA, we presenl an overview of
metrics commonly uvsed in channel assignment. We argue
that these metrics saffer (rom key drawbacks and, therelore,
fail to satisly condition (1) above. In order to address these
drawbacks, the metrics should be traffic-aware, i.e. they should
capture prevailing traffic demands in the WLAN. In Sec-
tion HE-A we show how to construct traffic-aware melrics.

Choosing an appropriate optimization metric is only part
of the problem. Computing the optimal channel assignment,
even for the simplest melrics, is known to be NP-hard {18].
In Section III-B, we develop efficient heuristics for computing
close-to-optimal assignmenis for traffic-aware metrics.
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A practical implementation of {raffic-aware chammel as-
signment must address a few key challenges such as how
to measure wireless interference, how to cope with realistic
wireless interference patierns, and how o measure and predict
traffic demands We discuss and address these challenges in
Section HI-C. Finally, we summarize the traffic-aware chamnel
assignment approach using a flow-chart in Section 111-13.

A. Opiwizardon Mewics for Channel Assignment

It is appealing Lo directly use wireless nelwork perlormance,
such as throughput or delay, as optimization metrics. However,
modeling wireless network performance is hard because inter-
ference is complicated and difficult to model. In this paper, we
focus on the “channel separation” metric, which maximizes the
difference in the chamnels of inferfering nodes. This metric
is simple to compute and reflects the goal of minimizing
interference. While we apply traffic-awareness to the “charnnel
separation” melric, we believe that fraffic-awareness can be
equally applicable to other optimization metrics to provide
more efficient chanmel assignments.

The chammel separation mefric 18 computed as follows:
Let C; denote the channel assigned to AP i Also, if
APs ¢ und 7 are within inlerference range of each other,
define Separation(i,j) = min(]C; — C4,5), otherwise
Separation(i, 7) = 5, We use 5 as an upper-bound of charmel
separation because charmels 1, 6, 11 in 802.110/g are consid-
ered orthogonal. Furthermore, separation values between 0 and
5 can be used to support partially-overlapping channels. Our
evaluation {ocuses on orthogonal chanmels, and [20] can he
consulted for a primer on partiallyv-overlapping channels. Let
A denote the set of APs. Then the channel separation objective
is: Mazimize © 3, 004 s Separation(i, 7). This metric is
easy to compute given the interference graph.

However, this metric fails to reflect the performance of the
network due to two reasons: (1) The metric ignores whether
wireless nodes are active. In fact, the nodes are assumed fo
always be active. In practice, some wireless nodes are mare ac-
tive than others. Since the mumber of available non-overlapping
channels is very small (only 3 in 8021 Ib/g), incorporating the
activity of nodes can resull in betfer channel assignments. (2)
Furthermore, the metric ignores clients completely. In practice,
minimizing inlerference introduced by client transmissions 1s
also important, Our analysis of real wireless traces shows that
clients fransmit & significant volume of traffic. As we show
later, these two drawbacks result in poor chanmel assignments
in terms of overall network performance. Due to the ahove two
properties, we refer (o the tradiional mefric as fraffic-agnostic,
clieni-agnosic.

1} Clieni-awareness: When the interference graph induced
by clienis is available, clienr-gware channel assignment be-
comes possible. The corresponding metric is: Maximize -
Dt jeAun BSS(=Rss(n deparation(i, j). Ilere B denotes
the set of clients n the network. Also, nodes 7, § in the sum
must helong o different BSSs. This melric 1s designed o
capture the channel separation between any two interfering
APs, any two interfering clients that are associaled with

different APs, and an interfering AP-client pair. Note, however,
that the metric is still traffic-agnostic. Mishra et. al [18]
propose a waffic-agrosiic, client-qware metric similar to this.

2} Fraffic-awareness: The previous two metrics do not
take into account the actual traffic volumes or periods of
activity of individual clients and APs. Thus, these metrics
may force inferfering hut relatively mactive APs or clients
to operate on non-overlapping channels, whereas a smarter
channel assignment would have re-used these channels to
mifigate interference at other active network locations.

In order o verify thal traffic varies across BSSs, we exam-
ined the traffic demands at APs from publicly-available traces
(circa 2004 [137). While we omit the details for brevity, we
found that trallic volumes could vary substantially both across
APs and across time [26]. We cbserve a similar variation
among client traffic. Such variation prevents traffic-agnostic
metrics from fully exploiting the capacity of the wirgless
medinm.

hcorporaling fraffic volumes and the activity of wircless
nodes requires a simple change to the traffic-agnostic metrics.
Before outlining this modification, we define the term demand
informally. The sending demand of a node is the aggregale
amount of data (excluding link-layer ACKs) it wishes to
fransmit per unit time. In the case of a client, there is a single
recipient- its AP; in the case of an AP all of its clients could
be recipients. Similarly, the receiving demand is the amount of
data (excluding link-layer ACKs) the node wishes 1o receive
from various transmitters,

To incorporale traflic-awareness into chammel assignment,
we simply need fo ensure thal interfering nodes with high
individual demands (specifically the BSSs containing such
nodes) are assigned to non-overlapping channels. However, 1o
obtain an effective channel assignment, we must understand
how the send and receive demands of inferfering nodes affect
each olher. Observe that whenever two nodes A and B are in
interference range, the transmissions of one node will affect
not only the transmissions at the other node but also the
recaptions at the other node. The former effect i3 a mani-
festation of 802.11°s carrier sense and back off mechanisms,
The latter occurs due to packet collisions that can arise in
hidden-terminal seftings.

Using this insight, we scale the channel separation belween
A and B with the following “weight” Wap = 54 x 5 +
Sax Hp+5px Ry, where 5 is the send demand, and K is the
receive demand. tuitively, if we abuse notation and let 54
(£24) denote the fraction of time A’s transmissions (receptions)
acquire the mediom, the first terin reflects the probability of A
and B's transmissions interfering with each other. The second
(third} term refiects the probability of A's (B's) transmissions
interfering with B's (A's) receptions.

Using the above weights, we can define the following sraffic-
aware, clienf-agnostic metric: Mazimize: E“ At 7y %
Separation(, 7).

Similarly, we can define a sraffic-aware, clieni-aware
metric: Mazimize Wis x

.
241 CAUR, BES(H#BSE()
Sepoaration(s, 7).
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B. Efficient Algorithms for Computing Channel Assignments

Since optimizing a channel assignment is NP-hard, we
use simulated annealing (SA) [27] to obtain near-optimal
assignments for each metric. SA is appropriate in this context
since it can iteratively improve the solution while avoiding
being stuck in local optima. To speed up convergence and
achieve good performance, we use an informed initialization
algorithm that is inspired by Chaitin’s approach to the register
allocation problem [11].

1) Initializarion Algorithms: We first describe an initial-
ization algorithm that does not consider traffic demands and
treats every node equally. Then we extend it to account for
different traffic demands at each node. The initialization does
not take clients into account, irrespective of whether the metric
in question is client-aware or client-agnostic. When client-
aware metrics are used, we rely on SA in Section I1I-B.2 to
effectively incorporate client-side information.

Figure 1 shows the algorithm for the traffic-agnostic case.
The intuition of the algorithm is to defer channel assignment
for APs that have many conflicts with other APs. For such
APs, the choice of the channel is very important and more re-
strictive, as it depends on the channels assigned to neighboring
APs. Also, when an AP has few conflicts, we have a greater
amount of flexibility in assigning channels. For such APs, we
can even assign channels without knowing the channels chosen
for the neighbors. In this algorithm, K refers to the number of
non-overlapping channels.

1) Construct a conflict graph G for APs in the WLAN, where
there is an edge between any two nodes if they interfere.

23 For any vertices in the conflict graph with degrees smaller
than K, choose the one with maximum degree and delete it
and its associated edges from the graph and push it onto a

stack. Repeat until no vertices with degree less than K remain.

3) If the resulting graph is non-empty, choose the vertex with
maximum degree and remove it from the conflict graph and
push it onto the stack. Go to step 2.

43 For all the vertices on the stack, pop one vertex at a time,
add it back to the graph, and assign it with a channel that is
different from all its neighbors up to this point.

If a vertex cannot be assigned, mark it.

3) For the marked vertices, assign them a channel that results in
minimum interference, where interference is calculated as the
number of interfering APs assigned the same channel.

Fig. 1. Initialization algorithm for channel assignment.

To extend the initial assignment to the traffic-aware case, we
do the following: First, we modify the degree used in step #2
and #3 by weighing it with total traffic as follows: degree(i) =
Zjea inter fere(i, ), where inter fere(i,j) = 0 if ¢ and 5
are not in interference range; inter fere(i,j) = sent(j) +
recv(j) otherwise. Note sent(j) and recv(j) are sent and
received traffic at node j§ normalized by the link bandwidth.
Second, in step #5, we assign marked vertices with a channel
that results in minimum interference, where the interference
at node 7 from node 7 is defined as inter ference(s, 7) =
0 if ¢ and 4 are on separate channels or not in interference
range, otherwise inter ference(i, ) = sent(j)+recv(j). We
then choose the channel that results in the minimum value of

inter ference(i, 7) summed over all 7 € A and j # 7.

2) Further Improvement via SA: We further improve the
initial channel assignment obtained above by using an iterative
search. We have compared several options for the search,
including random walk, SA, and greedy search. We found that
SA offers faster convergence and better assignment.

SA is inspired by the metal annealing process. In each
iteration, we randomly assign one of the APs (and its clients)
to a different channel. If the new assignment is better, we
update the current assignment to the new one. Otherwise, we
update the current assignment to the new one with the proba-
bility elfrew=Fourd/T where T is the current temperature, and
frew and four- are the values of objective functions under
the new and current channel assignments. The temperature
gradually decreases so initially we are more likely to accept
a worse solution and avoid being stuck at local optima. As
the temperature approaches 0, we progressively move in the
direction of improving the objective function. We set the initial
temperature to 10, and each iteration reduces temperature
to 0.999 of the current value. We use 1000 iterations and
the output is the best solution over all iterations. We note
the execution time of this approach is sufficient for practical
WLAN settings (e.g., for the traces we study, it takes well
under 1 second for SA to compute the optimized metric).

C. Practical Issues

We address several practical issues in channel assignment.

1) Measuring the Interference Graph: The effectiveness
of a channel assignment depends on the availability of an
accurate interference map. Four measurement and modeling
techniques [1] [25] [22] [2] have been proposed recently
to estimate wireless interference. The first three schemes
are based on the maximum throughput measurement when
one or two links are active, while the last scheme sends
coordinated probes at specific time instances, which intro-
duces lower traffic overhead but requires fine-grained time
synchronization. The first scheme [1] directly measures link-
based interference using broadeast probes. The second and
third schemes [25] [22] improve the scalability of the first
approach by developing an interference model based on RSSI
measurement. Hach sender sends a series of broadcast probes,
and all other nodes measure the received signal strength. Then
a model is used to estimate the sending rate based on received
signal strength and carrier sense threshold, and estimate the
delivery rate based on SNR. In this way, only O(N) broadcast
probes are required for measuring interference in an N-node
network. The two schemes differ in the type of interference
they can model — [25] works for pairwise interference and
broadcast transmissions, whereas [22] works for pairwise
and non-pairwise interference and for broadcast and unicast
transmissions. The fourth scheme, proposed by [2], sends
coordinated probes from APs to clients. For example, APs
Al and A2 estimate the interference on links A1 — 1 and
A2 — C2 by sending a probe on A1 — C'1 and then sending
a probe on A2 — 2 at the same time when C'1 sends an
ACK to Al. If C'1’s ACK 1is not received, it indicates the
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two links interfere; otherwise, they do not interfere. To further
enhance the robustness of this approach (e.g., packet collision
caused by an accidental transmission from somewhere else,
or data and ACK transmission time is slightly different), one
can measure multiple times and use consistent collisions as
the indication of interference.

Channel assignment and interference estimation are orthog-
onal. In our evaluation, we use the first approach due to
its simplicity, but our channel assignment approaches can
be directly combined with and benefit from other scalable
and accurate interference measurement techniques. In the first
scheme, we have one node, say A, broadcast packets as fast
as it can for 1 minute. Let R4 denote A’s broadcast rate
when it broadcasts alone. Then, we have two nodes, say A
and B, broadcast simultaneously as fast as they can for 1
mirute. R47 denotes A’s broadcast rate when A and B are
simultaneously sending. Similarly, Rﬁ‘B denotes B’s broadcast
rate when A and B are simultaneously sending. We then
compute BR = Eég—gﬁ— When B R is close to 1, it means
that nodes 4 and B do not interfere. When BR is close to
0.5, it means that these two nodes take turns in transmitting
packets and hence interfere with each other. Any values in
between indicate different degrees of interference.

2) Handling Non-binary Interference: Wireless interfer-
ence in real networks may not be binary and converting
BR into a binary metric loses accuracy. Thus, we extend
our channel assignment approach to work with the measured
BR. Figure 2 outlines our extension. As it shows, we first
convert B K to a value ranging from 0 to 1, where 0 indicates
no interference, 1 indicates complete interference, and any
values in between indicate partial interference. This value
only depends on the locations of nodes A and B, so it is
called LoclInterf. In addition, we also compute interference
across channels based on their channel separation, which is
referred to Channellnter f. As LocInter f, Channellnter f
ranges from 0 to 1, where 0 means no interference, 1 means
complete interference, and other values in between means
partial interference due to partially overlapping channels. The
final interference metric is the product of Loelnterf and
C'hannelInter f. The traffic-agnostic, client-agnostic assign-
ment aims to minimize }°, ; , OverallInter (i, 7), and the
traffic-aware, client-agnostic assignment aims fo minimize
EMGA OuerallInter (i, 7)* W (34, 7), where W (3, 7) = S; %
S+ 8 x Hi+ 55 x R; as defined in Section III-A.2, Similar
modifications apply to the client-aware metrics. Under binary
interference, the above non-binary objectives are the same as
the channel separation metrics defined in Section III-A. Our
simulation evaluation uses the channel assignment for binary
interference, since NS-2 only has a binary interference model.
Our testbed evaluation uses the channel assignment for non-
binary interference and we observe it out-performs the binary
interference-based assignment due to the presence of non-
binary interference in real networks.

3) Estimating Traffic Demand Informarion: The computa-
tion of traffic-aware metrics requires current WLAN demand
information. We approximate this using SNMP statistics.

BER = min{l, max{0.5, BR)); // ensure BR within range 0.5 .. 1
Loclnterf =2 — 2 x BR; // map BR torange 0 .. 1
ChannelDif f = min(|C; — C3,5),

Channellnterf = 1 — ChannelDif f +0.2;

Queralllnter {f = Channellnter f + LocInier f,

Fig. 2. Handling non-binary interference.

Enterprises routinely employ SNMP-based [10] tools to
monitor and manage their WLANs. Most commercial APs
export an SNMP management interface that provides the
following byte counts every five minutes: (1) bytes sent by
the AP (IfOutOct); (2) bytes received at the AP (IfInOct);
and, (3) the number of active clients currently associated with
the AP (NumClients). To illustrate, we can calculate the send
demands of APs and clients as Send_AP_Demand[t—5,¢ =

Ifomo':t(t)XT{OMO&(FS) and Send_Client_Demand[t —

{t)
54 = i Iggitﬁi Jgi:gf;((:) 3) Receive demands can be
computed in a similar fashion. We note it is possible to obtain
finer grained per-client demand information by correlating
SNMP, ayslaog, and tepdump statistics [17].

4) Predicting Traffic Demands: Traffic-aware channel as-
signment accurately reflects network performance only when
current demand information is available. In practice, we can
only use past information to predict the traffic demands at cur-
rent or future time intervals. To address this issue, we present
simple algorithms for estimating future demands based on
historical measurements (e.g., the previous SNMP data). We
can then use these predicted demands in channel assignment.

We must address two important issues: (1) How to use
historical data to identify trends in demands and to predict
future demands with reasonable accuracy? (2) How to enhance
the robustness of the resulting assignment against significant
variation in traffic demands? Next, we present a family of prac-
tical traffic-aware algorithms for channel assignment. These
algorithms offer varving degrees of trade-offs between these
issues, and we evaluate them in Section V.

Exponentially-Weighted Average (EWMA). This approach
predicts AP demands at time ¢ by using a weighted moving av-
erage of demands in previous intervals. More recent demands
are given larger weight: Dem_Pred(t) = w-Dem_Actual (t—
D+ (1—w) - Dem_Pred(t—1). We set the weight w = 0.9, We
use EWMA to first estimate the AP demand and the number
of active clients. Then we combine the two estimates to derive
the predicted client demands.

Optimal for the Previous Interval (PREV). Here, the
charnel assignment for time ¢ is simply the optimal channel
assignment for the traffic demands in time ¢ — 1 (or the
most recently sampled time interval, if there are no samples
available for ¢t — 1). In other words, PREV is simply EWMA
with w = 1. PREV is more sensitive to short term traffic
fluctuations than EWMA.

Optimal Over a Time Window (PREV_N). There are sev-
eral traffic patterns where PREV could be ineffective, e.g.,

periodic bursty traffic. Our next approach, PREV N, tries
to address this drawback by simultaneously optimizing the
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assignment for all traffic demands observed over a history
window. Given an optimization metric, PREV_N will derive
a channel assignment that maximizes the foral value of the
metric for the traffic demands from the past N intervals:
Optimize: ), | ny Metric(Demands(i — 1)).

Peak Demand in a Window (PEAK_N). This is a variant
of PREV_N: Instead of optimizing for all sets of demands
in a time window, PEAK_N obtains the optimal channel
assignment for the “worst-case” demand-set within the history
window. This allows the channel assignment to be more re-
sponsive to sudden increases in aggregate network utilization.

5) Limitations: The traffic-aware metrics do not capture
multi-rate adaptation. Incorporating this factor can complicate
matters because it requires real time measurement of the
received signal strength and/or the rates at clients. Since our
metrics do not capture multi-rate adaptation, we say they
are “rate-agnostic”. Tn Section VI, we evaluate the impact of
ignoring multi-rate vsing testbed experiments. We find rate-
agnostic traffic-aware channel assignment interacts well with
multi-rate adaptation. When clients and APs are close to each
other, traffic-aware assignment offers similar improvement
with and without multi-rate adaptation. This is because in
both cases almost all communications use the highest data
rate. When clients and APs are farther apart, traffic-aware
channel assignment can offer larger improvement under multi-
rate adaptation, because it reduces interference and allows
communication to use higher data rates.

D. Putting Ir All Togerher

the next Interval

Compute beaffic-aware
channel assignonent using 4

New asignment £
akdassignment

&
Change channal asslgnment

Outline of traffic-aware channel assignment.

Fig. 3.

Figure 3 summarizes the steps in traffic-aware channel as-
signment. The first step, measuring the interference graph, can
be conducted infrequently {e.g., a few times a day under light
traffic load). All other steps are repeated at the timescale of
collection of traffic demands, e.g., every 5 minutes. The traffic-
aware channel assignment approach requires no modifications
to the clients or the 802.11 standard. When clients are will-
ing to cooperate (e.g., by measuring client-side interference
and/or using an efficient re-association scheme described in
Section VII), the benefit of our channel assignment increases
further.

IV. EVALUATION APPROACH

To understand the benefits of traffic-awareness in different
operating conditions, we use two sets of experiments: (1)
First, we conduct simulations using both real and svnthetic
traffic demands and WLAN topologies (Section TV-A). While
the simulations allow us to explore the benefits of traffic-
awareness in a range of operating conditions, they abstract
away important real world effects. (2) To account for such
effects, we implement our approach over a modest-sized
wireless testbed and evaluate its performance using several
field experiments. In Section IV-B, we provide details of
our wireless nodes and the traffic demands we imposed in
our testbed experiments. We describe the implementation in
Section VI

A. Simulation Methodology

We use NS-2 version 2.29 with support for multiple non-
overlapping charmels. We use 802.11b with 11 Mbps medium
bit rate, RTS/CTS enabled, transmission range set to 60 m and
a corresponding interference range of 120 m. We generate
constant bit rate (CBR) UDP traffic at a specified rate with
data packet sizes of 1024 byles. Unless otherwise stated, the
traffic is bi-directional and symmetric: the send demand at an
AP is same as its receive demand. The traffic generated by
APs is uniformly distributed to all clients. We study the effect
on TCP traffic using testbed experiments (Section VI).

Since these are controlled simulations, we assume that the
locations of all wireless nodes are known and use free-space
propagation models [24] to estimate if two nodes interfere.
In our simulations, all interference is binary. To evaluate
the effectiveness of an assignment, we compute the tofal
throughput over all connections.

1) Syntheric Scenarios: Firsl, we use synthetic scenarios
to understand when traffic-aware channel assignment is ben-
eficial. We generate synthetic topologies and traffic traces
using the approach in [18], [20]. Specifically, we generate
topologies that consist of 50 APs and 200 clients in a given
area. Like [18], [20], we generate 15 random topologies, where
each client has 4 APs on average in its communication range.

Different from [18], [20], we generate two types of CBR
traffic to investigate how traffic distribution affects traffic-
aware assignments. The two types of demands are (i) uniform
random traffic demands and (ii) hofspor traffic demands. In
uniform random traffic, each AP is randomly assigned a
demand from 0 to the maximum CBR throughput on a wireless
link (3.6 Mbps for our NS-2 settings). In hotspot traffic
demands, a specified number of “hotspots™ are created. Each
hotspot is formed by randomly selecting an AP and all other
APs within its communication range. All APs in the hotspots
have traffic demands uniformly distributed between 0 and
3.6 Mbps, and all other APs have traffic demands uniformly
distributed between 0 and 10 Kbps.

2) Trace-driven Simularion: In addition to synthetic sce-
narios, we also conduct trace-driven simulations over two
publicly available wireless data sets from CRAWDAD: the
first was collected at Dartmouth College [13], [15] in 2004
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and the second dataset was collected at the IBM T.J. Watson
Research Center [8] in August 2002. These simulations allow
us to explore the benefits of traffic-awareness in real WLAN
deployments with real traffic patterns.

Dartmouth Traces. We analyze the data collected between
Feb. 10 and Feb. 12, 2004. Our analysis focuses on two
buildings - “ResBldg94” and “LibBldg?2” - containing 12 and
20) access points, respectively. Other buildings of similar type
{e.g. other ResBldg’s) have fewer access points.

The Dartmouth traces include SNMP statistics and the
number of active clients per AP sampled every 5 minutes
at all APs. We use the SNMP statistics and client-AP as-
sociation information to derive AP and client-side demands
{in Mbps) for every 5 minute interval. In addition, the data
contains geographic coordinates for the APs. There is no client
location information, so we assume that clients are randomly
distributed around their APs within a circle of radius 20m.

IBM Traces. The IBM fraces also contain SNMP statistics
and the number of active clients per AF for three different
buildings: “SBldg”, “MBldg” and “LBldg”. We focus on
“MBIldg”, which has 33 APs. Unlike the Dartmouth data, we
did not have the locations of the APs. Instead, we constructed
synthetic coordinates for the APs by placing them at hand-
picked locations in a 5-storied building spanning a 235x100m
lot. We analyze the data collected between Aug 11, 2002 and
Aug 13, 2002.

Our trace-driven simulations progress in rounds, where
a single round covers an SNMP interval. Within a round,
we apply the channel assignment algorithm, as described in
Section II1-B, to optimize the channel separation metrics.

To study the benefits of traffic-awareness in our simulations,
we focus on intervals with > 50% simultaneously active APs.
We consider an AP to be active if the total volume of traffic
it sends and receives exceeds 10 Kbps. Also, while trace-
driven simulation captures real usage patterns, its throughput is
limited by the capacity of the current provision scheme (e.g., if
the channel assignment in use was ineffective, the throughput
of the traces would be too low to see benefits of improved
channel assignment). To address this limitation, we scale up
the traffic demands in these intervals (on average, we scale
60X across all buildings). Note the 60X scale is chosen to
ensure the performance is not limited by the capacity of the
existing deployment, even though we also observe benefits of
traffic-aware assignment under much smaller scale-up values.

B. Experimental Approach

In addition to simulation, we also implement the channel
assignment algorithms in a wireless testbed. Testbed evaluation
is valuable because it allows us to evaluate the performance
of different channel assignments using realistic wireless signal
propagation, interference patterns, and multi-rate adaptation
schemes.

We set up a wireless testbed that consists of 25 Dell
Dimension 1100 PCs. The testbed spans two floors of an
office building. Each machine has a 2.66 GHz Intel Celeron
D Processor and runs Fedora Core 4 Linux. Each is equipped

with an 802.11 a/b/g NetGear WAGS11 card using MadWifi.
In our experiments, we use 802.11g. There are 8§ APs and
17 clients, with 7 APs having 2 clients and 1 AP having
3 clients. The loss rates from the APs to their clients vary
from O to larger values (up to 40%). We run the experiments
late at night to avoid interference with the resident wireless
network. We evaluate both traffic-aware metrics (client-aware
and client-agnostic) against a traffic-agnostic, client-agnostic
baseline. We measure wireless interference in the testbed using
broadcast probes (described in Section III-C.1) once before the
experiments start and use the same interference graph for all
experiments. This way the quality of a channel assignment is
also subject to temporal variation in the interference graph,
which is more realistic.

= | APi; | APiz | APiz | APis | APiz | APiz | APi, | APis

00 | 0340 | 0340 | 0.340 | 030 | 0340 | 0,390 | 0.340 | 0.340

05 | 0.622 | 0440 | 0.359 | 0311 | 0278 | 0259 | 0.235 | 0220

TO | 1000 | 0.500 | 0.333 | 0250 | 0.000 | 0.167 | 0.143 | 0.125

T5 | 0543 | 0943 | 0333 | 0.181 | 0.118 | 0.084 | 0.064 | 0.051

70 | 0778 | 0.778 | 0778 | 0.195 | 0.086 | 0.048 | 0.051 | 022
TABLE 1

NORMALIZED ZIPFIAN DEMANDS IN THE TESTBED.

We impose Zipfian demands across the APs in our testbed.
We try several different slopes for the Zipf-curve: a slope «
means that the top i-th demand is proportional to 1/¢%; we
vary o from 0 to 2, where O represents uniform demands
and a larger o indicates more skewed demands. The demands
generated from these slope values are listed in Table I. For
each slope value, we evaluate 5 different random mappings
of the generated demands to each AP and report the average
throughput over these 1 minute runs. Each mapping can give a
different traffic-aware channel assignment. We generate either
CBR UDP or TCP traffic from APs to clients with packet
sizes of 1024 bytes. For both types of traffic, we measure the
throughput using nuttcp [21]. We enforce a specified demand
in TCP traffic by utilizing the rate-limiting function in nuttep,
which places an appropriate upper-bound on TCP’s congestion
window. We use the same set of traffic demands for TCP and
UDP and assume these demands are known a priori.

V. SIMULATION RESULTS

We now present our evaluation based on NS-2 simulation.
As mentioned earlier, we quantify the effectiveness of a chan-
nel assignment by computing the total throughput achieved by
all network flows under the assignment. We have conducted
more simulation and testbed experiments than we can present
here. Refer to our technical report [26] for the complete results.

A. Simulations on Synthetic Settings

As described in Section IV-A.1, we create two types of
demands to understand the benefit of traffic-aware assign-
ment - vniform and hotspots. Figure 4 shows the cumulative
distribution function (CDF) of improvement of traffic-aware
charnel schemes over their traffic-agnostic counterparts under
each demand type. The CDF is plotted over the 15 random
topologies that we simulated.
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Fig. 4. Comparison of traffic-aware schemes against their traffic-agnostic
counterparts in synthetic topologies.

The improvement of traffic-awareness is mostly within
15% under uniform demands, whereas the improvement under
hotspots traffic is significantly higher: in 35% of the cases,
the improvement is over 20%, and in 10% cases, the im-
provement is over 50%. The benefit is larger under hotspots
than uniform demands because traffic-aware assignment aims
to assign APs with high load to non-overlapping channels;
this significantly increases the overall throughput when the
demands are skewed. Also, we observe the throughput (in
absolute values) is highest when the channel assignment is
both traffic-aware and client-aware.

In Figure 4(a), there are a small number of cases having
negative throughput improvement under traffic-aware assign-
ments. This is because the current channel separation metric
{even after incorporating traffic and client-awareness) is not
perfect. For example, consider a setting where two APs do
not interfere with each other but some of their clients do.
The current metric only takes into account the interference
between the clients, and ignores the additional effect of head-
of-line blocking at APs caused by the interference at clients.
We believe that our traffic-aware metrics can be improved
further to correlate more strongly with network performance.
We leave this for future work.

B. Trace-Driven Simulation Results

Next we compare different channel assignments using sim-
ulation based on real traffic traces described in Section IV-A.2.

1) Performance Benefits of Traffic-awareness: First we
compare the four channel separation metrics assuming that
we have perfect knowledge of traffic demands. Figure 5
shows a CDF of performance improvement of various channel
assignments against a traffic-agnostic, client-agnostic baseline.
Over the three buildings, the average throughput improvement
ranges from 4.0%-5.9% after incorporating client-side infor-
mation alone; it increases to 5.2%-11.5% by incorporating

traffic demands alone; and it increases further to 8.3-12.8% by
incorporating both traffic demands and client-side information.

As in the synthetic case, the extent of improvement is
traffic-dependent. When traffic is more evenly distributed, we
see little improvement from traffic-aware assignments. When
traffic is more heterogeneous, the improvement is larger. For
instance, we compute the classic Jain's fairness index for
demands corresponding to the interval with the maximum
improvement of 40% and for the interval corresponding to the
median improvement of 10% in the ResBldg94 trace, where
Jain’s fairness index is defined as (3" x;)%/(n * > ;%) for
demands x;...2,,. We note that the fairness in the former case
is almost one half of the fairness for median case demands.
This further confirms the more imbalanced the traffic demands,
the larger the benefit from using traffic-aware assignment.

Figure 6 compares the performance improvement of the
two traffic-aware metrics against their traffic-agnostic counter-
parts. Over the three buildings, the average improvement of
the traffic-aware, client-agnostic metric over traffic-agnostic,
client-agnostic ranges from 5.2-11.5%, whereas the aver-
age improvement of traffic-aware, client-aware over traffic-
agnostic, client-aware ranges from 2.3-8.6%. The former im-
provement is larger because the baseline performance is worse.
The largest improvement from traffic-awareness is around 35%
for ResBldg94 and around 25% for LibBldg?.
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Fig. 6. Comparison of various traffic-aware schemes against their traffic-

agnostic counterpaits. Results from IBM’s MBldg are omitted for brevity.

Approach Fairness
ResBldg T LibBldg T MBIdg
Tratfic-agnostic/client-agnostic 0,549 0.57 0.55
Traffic-agnostic/client-aware 0.91 0.89 0.87
Traffic-aware/client-agnostic 0.89 0.90 0.56
Traffic-aware/client-aware 0.91 0.91 0.87
TABLE II

IMPACT OF TRAFFIC- AWARENESS ON FAIRNESS

2} Fairness: Next we ask how traffic-awareness affects fair-

ness. We consider the ratio of the actual throughput obtained
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Fig. 7. Mean and median improvement of the traffic-aware, client-agnostic
metric against its traffic-agnostic counterpart as a function of density for
ResBldg.

at the AP to its original demand and compute Jain’s fairness
index over this ratio for all individual flows. As summarized
in Table II, all the algorithms result in similar fairmess. This
suggests that traffic-aware assignment improves throughput
without compromising fairness.

3) Impacr of Zipf-distribured Demands: So far we have
considered when the demand of an AP is equally distributed
across its clients. A number of studies show that realistic user
demands often exhibit Zipf-like distributions [9], [12]. So next
we compare various channel assignment schemes against a
traffic-agnostie, client-agnostic channel assignment approach
when the AP’s demand is distributed across its clients accord-
ing to a Zipf-distribution. Note that the total traffic rate to
and from each AP is the same in both cases. While we omit
the figure for brevity (see [26] for details), compared with
Figure 5(a), we observe the relative performance of the various
algorithms is similar.

4) Impact of Network Densiry: We now study the rela-
tionship between the density of a WLAN deplovment and
the benefits of traffic-awareness. Figure 7 shows the perfor-
mance improvement when we vary (ransmission range, and
consequently, the average number of interfering AP pairs.
The improvement first increases with density and then de-
creases. When the network density is low, very few APs
interfere with each other and all channel assignments yield
similar throughput. When network density is higher, a better
channel assignment can allow more nodes to simultaneously
transmit, thereby increasing total throughput. As network
density increases further, all the channels are fully utilized
everywhere, regardless of the assignment, and the benefit of
traffic-awareness is reduced.

5) Evaluation of Practical Traffic-aware Algorithms: In
the previous evaluation, we assume that traffic-aware channel
assignments have perfect knowledge of traffic demands. In
practice, such information is not known a priori, but has to be
estimated. Can the prediction error offset the potential gain of
traffic-aware channel assignment?

WMAPREVIFPEAKJPE AR
ResBldgl 0.48 [0.49] 0.70 1.02
LibBldg] 043 J047] 0.57 0.50
MBIldg[ 0.76 J0.91] 1.03 1.25
TABLE III
PREDICTION ERROR

To answer this question, we first compute the error in pre-
dicting traffic demands using various prediction algorithms de-

scribed in Section ITI-C. We quantify the prediction error using
mean absolute error (MAE), defined as .l redz:z;;;lcwal :|
Table I1T shows the MAE in predicting the total demand (hoth
send and receive demands) at the APs. As shown in Table III,
the best prediction algorithm is EWMA, which results in
MAE ranging from 0.43 to 0.76. This prediction error is still
quite significant. Large prediction errors are not surprising
since wireless traffic at each AP has low aggregation and
is much harder to predict than traffic in an ISP backbone.
Such high variability in traffic poses challenges to traffic-aware
assignment schemes.

Percentage Improvement

20 1 1 1 1 1 1 |
0 01 020304050607 0808 1
Cumulative Fraction

Fig. 8. Comparison of the traffic-aware, client-aware metric against its traffic-
agnostic counterpatt using vatious prediction algorithms in ResBldg94.

Next we evaluate the performance of channel assignment
using predicted demands and compare it with the case where
the true demands are known (the “oracle™). We evaluate the
improvement of the traffic-aware, client-aware metric over its
traffic-agnostic counterpart for ResBldg94 (see [26] for the
results of other traces). The performance of the prediction
algorithms closely tracks that of the oracle. Compared with
the oracle, the degradation of predictive algorithms is mostly
within 6%. Compared with the traffic-agnostic algorithm, the
improvement is still substantial. The median improvement for
the client-agnostic channel assignment is 8.13%, while the
client-aware channel assignment is 5.26%. The performance
degradation for the client-agnostic channel assignment is less
than the client-aware channel assignment because we have to
predict the client-side demands and this further increases the
prediction error for the latter.

Our evaluation suggests that even though wireless traffic
is hard to predict accurately, it is still feasible to apply
traffic-aware channel assignments, since the assignments are
reasonably robust against prediction errors. The robustness
arises from the fact that traffic-aware channel assignment
does not need accurate demands but only the rough spatial
demand distribution so that it can allocate more channels to
arcas that need them most. To lend further weight to this
intuition, next we conduct simulations where we introduce
Gaussian errors into demands. Figure 9 shows the CDF of
performance improvement of the traffic-aware, client-aware
charnnel assignment scheme against its traffic-agnostic coun-
terpart when we add errors with different standard deviation
(the performance is similar for the client-agnostic metric [26]).
As we would expect, the performance improvement increases
as the standard deviation of the error decreases. Moreover,
we observe that even when the standard deviation is 0.5, the
performance improvement is mostly close to that under no
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error. This is true for both clhient-agnostic and client-aware
assignments. These resulis further demonstrate the robustness
of traffic-aware assignment to a range of possible errors in the
demand information.
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Fig. 9. Comparison of the traffic-aware, client-aware metric against ifs traffic-
agnostic counterpart under Gaussian distributed errors with mean=0 and a
varying slandard deviation.

VI IMPLEMENTATION AND EXPERIMENT RESULTS

We implement the channel assignment algorithms as fol-
lows. A centralized controller takes the tralfic demands and
the interference graph among wireless nodes as the inpul
and computes channel assignments for the channel separation
metrics defined in Section {11 Then the controller disseminates
the new channel assignment to the APs by establishing ssh
commections through the back-cnd Fthernel connection and
remotely sets the APY channels using iwoonfig. After all
the APs’ channels have been changed, the controller remotely
starts the nuttop program with the specified fraffic demands
to measare network performance.

Throughput (Mbps)
Throughput (Mbps)

- client-agnosticfraffic-agnosti
15k client-agn ostichraffic-aware
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Fig, 10,  Overall TCP network throughput in 25 node festbed, whers the

errorbars show the average and standard deviation.

Figures 10(a) and 10(b) show the overall TCP network
throughput over 5 runs under {ixed-rate and muli-rate, respec-
tively (see [26] for the UDP results). We make the following
observations. First, as we would expect, the traffic-aware,
client-aware mefric performs the best, and the traffic-aware,
client-agnostic metric out-performs the traffic-agnostic, client-
agnostic metric. Second, the throughput variance of the traffic-
agnostic metric is generally higher than that of the traffic-
aware melrics. This is because the traffic-agnostic melric ig-
nores fraffic demands, and different channel assignments may
appear equally good according to the traffic-agnostic metric,
but its actual performance varies significantly depending on
whether the nodes with high demands happen to be assigned
to non-interfering channels.

Figores 10{a) and 10(b) also show the improvement of
fraffic-awareness generally increases with the slope @, When

aware, client-agnostic metric performs similarly as the traffic-
agnostic, client-agnostic metric. The traffic-aware, client-
aware slightly out-performs both the shove metrics by account-
ing for client-side interference. As o increases, traffic becomes
more concenlrated on a smaller number of nodes and both
traffic-aware wetrics see larger improvement. Moreover, the
improvement of traffic-awareness in some cases can be quite
high: we ohserve up to g 1.69-fold increase for TCP/fixed-
rate, and a 2.6-fold increase for TCP/multi-rate. The benefit of
traffic-awareness is larger under the multi-rate becavse traffic-
awareness can reduce interference and allow links o operale
at higher data rates.

VII. CHANNEL SWITCIING

Charmel swilching causes two Lypes of overhead: (1) delay
incurred by an AP to change iis channel - switching delay,
and (i1) delay incurred for the clients fo associate with the AP
on ils new channel - re-association delay. As reported in [19],
the switching delay varies from 200 us on Intel's ProWireless
to 10-20 ms on NetGear Atheros, Cisco Adronet, and Prism
2.5.

The re-association delay depends on the re-association
scheme. A simple approach, which is implemented by Mad-
Wifl, is for wireless clients to scan all channels to find the
AP with the highest RSSI. The re-association delay in this
case tends fo be long and is dominated by scanning time.
To reduce this time, an AP can broadeast the new channel
before switching so that the clients can directly switch to
the new charmel without performing scanning [23]. To protect
against packet losses, the new channel information can be sent
multiple times.

We refer to the above two re-association schemes as (1)
MadWifi default implementation, and (i) explicit notification.
We evaluale the overhead of chammel switching under these
two re-association schemes using testbed experiments. In
explicit notification, the AP broadeasts {ts new channel 5 times
before switching to protect against packet losses. Figure 11
sumimarizes the results of a W-minute TCP transfer between
an AP and its client using Madwili’s default implementation
and explicit notificalion, respectively. The UDP performance
is similar and omitted for brevity [26]. The x-axis tracks how
offen the AP changes its channel. To evaluate the impact
of frequent channel switching on different transfer durations,
we use on/off traffic, where both on-periods and off-periods
are exponentially distributed. Different curves in the graph
correspond to different average on-periods, ranging from 5
to 300 sec. The average ofl-period duralion is 5 seconds.
The process is repeated until 10 minutes have elapsed. As
shown in Figore 11(a), there is no degradation onder the
defanlt re-associalion scheme when the switching inlerval
is 2 minutes or higher For smaller switching intervals, the
overhead of the default scheme increases. In comparison, as
we can see [rom Figure 11(b), the overhead under the explicil
notification scheme is negligible for all switching intervals,
including switching once per 20 seconds. These results suggest
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the re-association overhead is negligible under the explicit

notification; even for the defanlt scheme, switching once every
5 minutes, as considered in this paper, incurs no performance
penalty.

An orthogonal approach (o further minimizing the 1mpact
of channel switching is to reduce the number of APs that
change chamnels. There are several approaches we can use.
The first approach is to apply the new channel assignment to
the real network only if it improves the optimization metric
by a threshold £, The second approach i to use the channel
assignment from the previous interval as the starting point
in the SA search and Hmit the number of channel switches
bv controlling the number of iterations in SA. This will bias
the ouicome of the search in favor of assignments that are
only shightly different from the current chanmel assignment.
Our evaluation results (refer to [26] for details) show that this
approach reduces the number of channel changes without com-
promising the performance. For example, when the number of
SA iterations is limited to 5, the performance improvement is
close to that without this limitation, and on average only (0.84
APs are required to switch their channel per interval,

VIII, SUMMARY

The importance of channel assignment for improving the
efficiency of spectrum usage in WLANs has been well-studied.
Different from the previous work, our work explores the effect
of dynamically adapting the channel assignment to prevailing
traffic conditions. Using extensive simulations and iestbed
experiments, we show that frgffic-aware chamnel assignment
approaches could significantly improve the quality of a channel
assignment in practice.

We perform a delailed study of the operating conditions
under which traffic-awareness offers maximum benefit. We
show that the benefits of the approach are tightly coupled to
the deployment environment. For example, traffic-awareness
is most helpful when fraffic demands are concentrated at a
small number of heavily-loaded APs located close to each
other. The approach is of little use when traffic demands are
uniform across the WLAN or when the WLAN deployment
is too sparse. Our testbed experiments show that the benefits
of traffic-awareness extend fo both TCP and UDP fraffic and
both fixed-rate and multi-rate adaptation.

Our paper establishes the importance of fraffic-awareness o
the management of WLANs. Although our focus has been on
campus and enterprise networks, we believe that the central
idea of this paper - fraffic-awareness - is widely applicable

to other scenarios such as multi-hop mesh networks and
nncoordinated deployments.
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