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Abstract- While the 802.11 power saving mode (PSM) and
its enhancements can reduce power consumption by putting
the wireless network interface (WNI) into sleep as much as
possible, they either require additional infrastructure support, or
may degrade the transmission throughput and cause additional
transmission delay. These schemes are not suitable for long
and bulk data transmissions with strict QoS requirements on
wireless devices. With increasingly abundant bandwidth available
on the Internet, we have observed that TCP congestion control is
often not a constraint of bulk data transmissions as bandwidth
throttling is widely used in practice.

In this paper, instead of further manipulating the trade-off
between the power saving and the incurred delay, we effectively
explore the power saving potential by considering the bandwidth
throttling on streaming/downloading servers. We propose an
application-independent protocol, called PSM-throttling. With
a quick detection on the TCP flow throughput, a client can
identify bandwidth throttling connections with a low cost. Since
the throttling enables us to reshape the TCP traffic into periodic
bursts with the same average throughput as the server transmis-
sion rate, the client can accurately predict the arriving time of
packets and turn on/off the WNI accordingly. PSM-throttling
can minimize power consumption on TCP-based bulk traffic
by effectively utilizing available Internet bandwidth without
degrading the application's performance perceived by the user.
Furthermore, PSM-throttling is client-centric, and does not need
any additional infrastructure support. Our lab-environment and
Internet-based evaluation results show that PSM-throttling can
effectively improve energy savings (by up to 75%) and/or the QoS
for a broad types of TCP-based applications, including streaming,
pseudo streaming, and large file downloading, over existing PSM-
like methods.

I. INTRODUCTION

The Internet has been dramatically advanced and signifi-
cantly changed in two aspects. First, wireless Internet accesses
become pervasive with the widely deployed WiFi networks
on university campus, in business enterprises, public utilities,
and residential houses. Second, media content has accounted
for a high percentage of the Internet traffic volume. Under
these two trends, more and more people are accessing Internet
media services via wireless connections, on both mobile or

portable devices such as laptops, PDAs, BlueTooth devices,
and stationary desktop computers.

Mobile and portable devices are usually driven by battery

power. Due to the limited battery capacity, it is essential
to reduce power consumption on mobile devices without
degrading the performance of applications, particularly for
those applications that are QoS sensitive. The basic power
saving method is to put the wireless network interface (WNI)
into the sleep mode when it is idle, e.g., IEEE 802.11 power
saving mechanism [10]. However, 802.11 power saving mode
(PSM) may increase the connection round trip time due to the
lagged data reception, and thus may significantly degrade the
throughput of TCP-based applications. In order to achieve a

high TCP throughput, the WNI has to be active to generate
timely acknowledgments for received data. As a result, a

significant amount of energy is wasted on channel listening [7],
[9]. For applications like TCP-based streaming media, which
has strict requirements on packet delay and can quickly drain
out the battery of mobile devices, it is difficult to explore the
trade-offs between the power saving and the caused delay to
applications.
The power saving mode can be most effectively managed

if the streaming traffic flowing to a client is in a predicable
pattern, such as periodic bursts. Accordingly, the client can

accurately adapt to streaming traffic pattern to sleep and
to work periodically. Therefore, the power consumption on
the client device is minimized while the demanded high
throughput is also maintained. Efforts have been made towards
this goal. However, existing solutions are either expensive or
inefficient. For example, a proxy-based solution [5] is pro-
posed to buffer and shape streaming media traffic into blocks,
so that the data packets arrive at the client side with predictable
intervals. Although clients can transit to lower power states
during the block intervals without degrading application level
performance, this solution needs a dedicated infrastructure
support and is protocol dependent. Furthermore, RTSP-based
Windows, RealNetworks, and QuickTime streaming services
have their own extensions on the standard RTSP protocols [8],
which have to be implemented individually for a general
purpose RTSP proxy.

A client-centric scheme [13] is proposed to reshape the TCP
traffic into bursts, and put the WNI into sleep between two
bursts by modifying the client TCP stack. Besides lacking
specific consideration for the streaming traffic, this scheme
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increases the data transmission time as a trade-off, which
can be a high cost for some bulk data transmissions and
unacceptable for streaming media applications with stringent
QoS demands.

Streaming, pseudo streaming, and file downloading are
the most commonly used media delivery approaches on the
Internet today [8]. These techniques typically use TCP as the
transmission protocol. With the increasingly abundant Internet
bandwidth, the transmission rate of media traffic is often not
constrained by the TCP congestion control mechanism on the
network, but by the control on the server side, which we
refer to as bandwidth throttling, due to an increasingly high
demand of server resources. With bandwidth throttling, the
Internet transmission is constrained by the server side instead
of the available Internet bandwidth. That is, there may be idle
Internet bandwidthi without full utilization. Our observations
show that bandwidth throttling has been commonly adopted in
practice in a large variety of TCP-based bulk data transmission
applications, in which media services are the most typical.

In this paper, we aim to take this unique opportunity
offered by bandwidth throttling to exploit unused Internet
bandwidth for power saving at the client side in WLANs.
We propose an application-independent PSM protocol, called
PSM-throttling, to significantly improve the power saving
efficiency for bulk data communication applications with
stringent QoS requirements. In PSM-throttling, with a quick
detection of the TCP flow throughput, a client can identify
bandwidth throttling connections with a low cost. Since the
effective data transmission rate is often much lower than the
available Internet bandwidth due to bandwidth throttling at
the server side, the unused network bandwidth enables us
to reshape the traffic into periodic bursts with an average
throughput the same as the server transmission rate. With such
periodic burst transmission patterns, idle and busy phases on
the network transmissions can be clearly distinguished. Thus
packet arrivals can be accurately predicted at the client side.
As a result, the WNI can be turned on and off at the right time,
in order to minimize energy consumption without degrading
the user-perceived performance. The protocol can also detect
dynamic changes of the server transmission rate in time with
a small cost by tuning the burst size and burst intervals to
maximize client perceived throughput and minimize energy
consumption. Since PSM-throttling works at the transmission
layer on the client and does not affect server transmission rate,
it is application independent and client-centric.

Our Internet-based evaluation results show that PSM-
throttling can effectively improve energy savings by up to 75%
on the WNI or the QoS for a broad types of TCP-based bulk
communications, including streaming, pseudo streaming, and
large file downloading, than other power saving schemes.

The remainder of this paper is organized as follows. Section
II presents our observations and measurements on typical bulk
data transmission applications on the Internet and lab environ-
ments. We present PSM-throttling system designs in Section
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Fig. 1. Bandwidth throttling in streaming servers and Web servers

III. Based on an implemented prototype, we evaluate PSM-
throttling with real experiments on the Internet environments
and lab environments in Section IV. Section V outlines the
related work on power saving in WLANs. Concluding remarks
are made in Section VI.

II. BANDWIDTH THROTTLING IN TCP-BASED MEDIA
TRANSMISSIONS

In this section, we characterize the performance of rep-
resentative bandwidth throttling applications through Internet
measurements, in order to explore the power saving space
for TCP-based long duration and bulk data transmissions. We
focus on the TCP-based Internet media delivery since media
content is prevailing in online services and accounts for the
majority of the Internet traffic [8].

Current Internet media traffic is mainly delivered via stream-
ing, pseudo streaming, and file downloading techniques, where
the bandwidth throttling is commonly used in practice.

Streaming: Although traditionally UDP is the ideal pro-
tocol for streaming delivery, today TCP-based streaming
accounts for more than 80% of the Internet streaming traf-
fic, due to the wide deployment of NAT routers/firewalls
and the overhead of protocol rollover [8].
For streaming services, typically each stream is delivered
at its encoding rate, even if there is more bandwidth
available between the client and the server. Although Fast
Cache [2] based streaming can deliver a media object
with a rate up to five times of its encoding rate, it is
not resource efficient and is disabled by most media
services in practice [8]. Furthermore, with the increas-
ing popularity of streaming services, a streaming server

may need to serve hundreds or thousands of concurrent
requests at the same time. Delivering a media object
with a much higher rate than its encoding rate would
significantly decrease the number of concurrent requests
a server can service, and the user-perceived performance
will be degraded when a burst of requests arrive.
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*Pseudo Streaming and Downloading: Besides stream-
ing services, many content providers and Internet media
services, such as YouTube and Google video, leverage
pseudo streaming techniques to deliver media content
with common Web servers [6]. The transmission in
pseudo streaming is essentially normal HTTP download-
ing. However, the client player can play the received data
when a small playout buffer is fulfilled, without waiting
for the complete downloading of the entire media.
In order to serve a large number of concurrent requests,
typically a pseudo streaming server has to limit the maxi-
mal throughput of each TCP downloading session, which
is often much smaller than the end-to-end bandwidth
between the server and its clients on the Internet.

Figure 1 illustrates the bandwidth throttling on either a

streaming server or a Web server. 'The bandwidth throttling
by a streaming server is often conducted in a fine granularity,
so that the outgoing packets are evenly distributed in the
stream. In contrast, the bandwidth throttling by a Web server
is often conducted in a coarse granularity, and the outgoing
packets may be sent with a bursty stream. Next, we present our
Internet measurements to further understand the implications
of bandwidth throttling on power saving.

First, we studied the widely used streaming services on
the Internet, including RealNetworks media streaming and
Window media streaming. All servers in our measurements,
including Window media servers and RealNetworks media
servers, are hosted by a CDN. For TCP-based RealNetworks
media streaming, the server sends media packets with regular
packet intervals. In order to test whether it is bandwidth-
throttling or not (i.e., whether there is any unused bandwidth
between the client and the server), we suppress the media
transmission by setting the receiving window of TCP ACK to
zero for 200 milliseconds at the client side, and then restore the
original receiving window size to let the server send the data
buffered in thie TCP congestion queue. When thie first packet
is received, we choke the connection by sending a TCP ACK
with zero receiving window size for 200 milliseconds again.
Figure 2(a) shows the original data transmission sequence,
while Figure 2(b) shows the sequences after our periodical
choking. It shows that the TCP traffic becomes bursty, while
the overall throughput keeps unchanged. The reason is as
follows. As shown in Figure 1, when the TCP connection
is choked by the client, the TCP layer at the server side
cannot send more data. However, at the application layer, the
streaming server continues to send data to the TCP layer,
until the TCP congestion window is full. As a result, once
the connection is unchoked, the TCP layer at the server side
sends all data in the congestion window immediately. Since
the average sending rate of the streaming server, i.e., the
streaming rate. which is equal to the media encoding rate
by default, is much smaller than the end-to-end bandwidth
between the client and the server, when the buffered data is
sent, no more data can be filled in the TCP congestion window
in time, resulting the traffic bursts. For TCP-based Windows

media streaming, we have similar observations, as shown in
Figure 3(a) and Figure 3(b).

Second, we study the Internet pseudo streaming from
YouTube. Figure 4 shows the time sequences of typical TCP
connections of pseudo streaming media served by YouTube
servers. Figure 4(a) shows the sequence without our inter-
ferences. The figure indicates that the traffic of YouTube is
already bursty, due to the coarse granularity scheduling of
packet sending for each connection.

Although the traffic bursts in pseudo streaming provide
potentials to save energy by scheduling the on and off of the
WNI, such bursts are not periodic and it is difficult for the
client to predict the arriving time and finishing time of a burst.
However, with a synchronized choking and unchoking on the
client side, it is possible to predict packet arrivals in a high
accuracy. Figure 4(b) shows the situation after our periodic
choking is applied with a period of 200 milliseconds. The
figure shows that both the burst length and the interval are

approximately periodic with our choking scheme. Thus, the
client can sleep and wake up at the right time and the energy
consumption on the WNI can be minimized.

Although the above experiments confirm that bandwidth
throttling is common in the Internet applications and it could
be leveraged to save more power at the client side by choking
and unchoking corresponding TCP flows, inappropriately flow
choking may lead to unacceptable penalty. Figure 5(a) shows
the time-sequence of a typical TCP connection for HTTP
downloading served by a Apache Web server. Figure 5(b)
shows the corresponding result after the traffic is shaped by
periodic choking and unchoking. As shown in Figure 5(b),
although the reshaped traffic becomes bursty and more energy
could be saved, the TCP throughput is actually reduced. The
reason is that in this case, the server does not use bandwidth
throttling to limit the transmitting rate at the application layer.
Choking the connection will cause the server to pause the data
transmitting, but the TCP transmitting rate cannot be increased
after unchoking, and the overall throughput is decreased.
Therefore, choking and unchoking must be carefully used to
reshape the traffic. Unless bandwidth throttling is detected,
traffic reshaping via choking/unchoking is not encouraged.

Besides Internet experiments, we have also conducted ex-

periments on Windows media server, RealNetworks media
server, and Apache Web server in the lab by simulating the
Internet environment with NIST Net emulator '. All the ex-

perimental results are consistent and confirm our observations.

III. PSM-THROTTLING PROTOCOL DESIGN

Our study in the last section shows that 1) bandwidth
throttling commonly exists in various Internet applications,
which implies that there are great potentials for further power
savings on the WNI at the client side, and 2) the simple

'http://www-x.antd.nist.gov/nistnet/
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Fig. 2. Time-sequence graph of TCP-based streaming media by RealNetworks media server
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Fig. 3. Time-sequence graph of TCP-based streaming media by Windows media server
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(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 4. Time-sequence graph of YouTube streaming

choking and unchoking scheme to reshape the traffic may

affect the performance of the running application. Therefore, to

explore this power saving space, first, the bandwidth-throttling

must be correctly detected in time. Second, the client must be

able to predict the packet arrivals accurately so that the WNI

can be turned on and off at the right time.

Aiming to achieve maximal power savings without de-

grading application level performance, in this section, we

propose PSM-throttling, an efficient power saving mechanism

for TCP-based bulk data communications. After presenting our

detection algorithm, we will present our two level traffic burst

generation algorithm. Lastly, we discuss how our proposed

protocol promptly adapts to the fluctuations of the server

transmission rate and network transmission rate.

A. Bandwidth Throttling Detection

In the experiments presented in Section II, we have shown

that the traffic of pseudo streaming from YouTube is already

bursty, for which bandwidth throttling is easy to be identified.

However, other applications, such as TCP-based streaming
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(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 5. Time-sequence graph of TCP-based file downloading by Apache Web server

media, does not normally have traffic bursts. In order to exploit
the under-utilized bandwidth on the Internet for power savings
at the client side, a quick bandwidth throttling detection
algorithm with low overhead is designed as follows.

First, the detection algorithm needs to measure the round
trip time (RTT) between a client and its server. Thus, the
TCP timestamp option is enabled in the TCP header when
the client initiates a TCP connection. Once a TCP connection
is established, the protocol agent monitors the flow rate and
the transmission duration. If the TCP connection maintains a
stable flow rate r for a specific duration To (To > 5 seconds),
the protocol agent begins to test the bandwidth utilization
of this connection. The threshold To is set based on the the
default playout buffer size of widely used media players such
as Windows media player [1]. The throttling test is conducted
as follows. The client sends a choke ACK to the server, in the
TCP header of which the receive window is set to zero. After
sending the choke ACK, the client will still receive packets for
a RTT, because it takes half of a RTT for the choke ACK to
arrive at the server. Then after two RTTs, the client sends an
unchoke ACK, and restores the original receive window size.
Thus, the server will buffer the data sent from the application
layer for two RTTs, and then send these buffered packets in
a burst if they can be held in a congestion window. Upon
receiving the first packet after sending the unchoke ACK, the
protocol agent can estimate the flow rate r' for the 2RTT t r
number of bytes. If r' > 2,r, that means the server only
uses less than half of the end-to-end bandwidth for the data
transmission, and we can exploit this potential to save energy
at the client side.

In this detection algorithm, the threshold of end-to-end
bandwidth to media encoding rate ratio is set to 2 above which
PSM-throttling is enabled. That is, if the un-utilized bandwidth
is less than the end-to-end bandwidth, PSM-throttling will not
be activated. One reason is that if the un-utilized bandwidth
is too small, the power saving would be trivial and may not
offset the overhead. This will also be considered in the burst
generation. On the other hand, some previous research has
studied the relationship of the end-to-end bandwidth with the
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Fig. 6. TCP level burst generation with flow choking and unchoking

object encoding rate, i.e., the ideal data transmission rate.
For example, Wang et al. [11] have conducted a modeling
study and found TCP-based streaming can achieve good per-
formance when the end-to-end bandwidth between the client
and the server is about twice of the object encoding rate, with a
small playout buffer for only a few seconds. A measurement
study by Guo et al. [8] shows that transmitting the media
traffic with a much higher rate than the object encoding
rate helps little on the client performance while limits the
system capacity for serving more client requests. Therefore,
in our current design and experiment, the bandwidth to media
encoding rate threshold is set to 2.

B. Two Level Traffic Burst Generation

After bandwidth throttling is detected, we can start to
reshape the traffic to form periodic packet bursts. We achieve
this through well tuned two level burst generation schemes.
Accordingly, the client is able to predict when a packet burst
arrives, and when the packet burst terminates. In addition, the
interval between bursts should be non-trivial so that the WNI
can be turned off.
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flow burst period

Fig. 7. MAC level reconciliation for burst generation with access point buffering

1) Initial Traffic Burst Generation at TCP Layer. For the

TCP level burst generation, assume the connection round trip

time is RTT, the end-to-end bandwidth between the client and

the server is BW. Denote the media transmission rate as r,

according to our detection algorithm, BW > r. Assume the

duration of receiving a packet burst is Trecv and the duration

of the sleep interval is Tsieep, and the duration of a flow burst

period, Tburs,t, is the sum of Trecv and Tsieep. As long as the

sleep duration is not trivial, this burst generation mechanism

is engaged to save power in a coarse granularity.

The server traffic bursts are generated by leveraging the TCP

flow control as follows. As shown in Figure 6, after bandwidth

throttling detection, the client sends an unchoke ACK to the

server, specifying the receive window size in the TCP header.

Upon receiving the unchoke ACK, the server sends the number

of bytes that the client requests to the network interface (if it

is smaller than congestion window size) together in a burst.

Then after the client receives the first data packet, it sends a

choking ACK with zero receive window in the TCP header.

Then after a RTT, the client receives the last packet the server

sends in the burst. In order to let the choking ACK sent by

the client block the data flow before the client receives the last

packet in the burst, the burst duration Trecv should be larger

than one RTT.

The unchoke ACK must be sent before a RTT when the

client wakes up to receive data. Since the unchoke ACK may

be lost, the client may need to retransmit this packet when

necessary. As a result, the next choke ACK cannot be sent

before the client receives the first data packet for the current

unchoke ACK. That is, a flow burst period must not be less

than two RTTs.

Note that in the above settings, by setting the receive

window size in the TCP headers of ACK packets, the client

can specify the total number of bytes in a packet burst. When

the entire burst has been received by the client, the client can

safely put the WNI into sleep to save energy.

2) Traffic Burst Reconciliation at MAC Layer. Following

the above protocol, we can get traffic bursts. However, this

initial design would not enable us to minimize the power

consumption on the WNI. The problem comes from the

mismatch transmission speed on the Internet and the WLAN.

Typically, for most high speed Internet users, the end-to-end

bandwidth between a client and its server is about 2 Mbps,

while the effective bandwidth in current WiFi networks such as

802.1 Ig can be up to more than 24 Mbps. In such a WLAN,

there are still great potentials to save energy further if the

WLAN is lightly loaded, because the packet transmission over

wireless networks is much faster than that over the Internet:

with our initial traffic burst generation algorithm, the burst

traffic is transmitted with the rate of end-to-end bandwidth.

If the number of packets in a burst is large, the interval of

successive packets when they arrive is non-trivial. A significant

amount of energy will have to be wasted to keep the WNI

awake to wait for these packets if nothing further is performed.

Motivated by the speed mismatch of the Internet and the

WLAN, we further refine our burst generation protocol at the

MAC layer through access point buffering. The basic idea is as

follows. We divide a long TCP burst into several MAC frame

bursts. The duration of each MAC frame burst should be short

enough so that buffering them on the access point will trivially

affect the RTT estimation. Meanwhile, the duration of each

MAC frame burst should be long enough so that the energy

cost of mode switching of the client WNI is smaller than the

energy saved for receiving this burst. For many commercial

WNI products like what we use in our experiments, the mode

switching overhead is about 4 ins. Thus, we set the duration

of each MAC frame burst as 20 ins.

Figure 7 shows the generation of MAC level bursts. The

arriving TCP bursts are buffered at the access point. The client

can predict the burst arrival accurately, since the burst arrives a

RTT after the unchoke ACK. The client also knows the number

of bytes in this burst. Thus, the client waits for about 20 ms

so that there are enough packets buffered at the access point,

and then polls the access point to receive data. After receiving

one MAC level frame burst, the client sleeps another 20 ms

and then polls the access point. As a result, in a lightly loaded

WLAN, the client can save more energy.

When the WLAN is heavily loaded or even congested, the

poll message sent by the client may not be responded quickly.

In this case, the client may wait for a longer time to receive

the polled packet. As a result, after the client polls all packets

in a MAC level burst, it may have no time to sleep, and will

continue to poll the next burst, which will not outperform the
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Fig. 8. Adaptation to server transmission rate

initial TCP layer traffic burst generation algorithm.

C. Adaptation to Network and Server Transmission Fluctua-
tions

On the Internet, the end-to-end bandwidth between the client
and the server may fluctuate from time to time. As a result, it
is difficult to predict the duration of a TCP level burst at the
client side. A delay in packet receiving may cause prolonged
RTT or even time out, which may affect the TCP performance
significantly. On the other hand, if the client keeps awake
waiting for packets in a burst, the energy consumption for
idle awake time may be non-trivial, since it cannot predict
burst duration accurately.

In the design of PSM-throttling, we have considered such
a situation. As discussed before, a client detects when a burst
ends based on the number of bytes it receives, not based on
the duration of the burst, since the number of bytes in a burst
is specified by the receive window size. Thus, the client only
needs to keep awake receiving the specified number of packets,
and the sleep time of the client WNI is the remaining time
during a burst period. In this way, the network bandwidth
fluctuations can be smoothed out automatically.

In addition to the network fluctuations, the server transmis-
sion rate may change, although in most bandwidth throttling
transmission cases, such cases are rare. A server may increase
or decrease its transmission rate suddenly during a user
session. For example, in streaming media services, a user may
use fast forward. In the response, the server transmits media
content to the client in a higher speed (about five times of
the media encoding rate for Windows media services). If our

Internet server

Fig. 9. Implementation testbed

detection protocol cannot detect such changes in time, the user

may experience a degraded fast forwarding experience.
In order to quickly detect the server transmission rate

variations, in PSM-throttling, the receive window size in
the TCP ACK headers is dynamically adjusted. Initially, the
receive window is set based on the average transmission
rate estimated during bandwidth throttling detection. PSM-
throttling monitors the sleep time, as well as the average
throughput during a flow burst period. If the sleep time falls
below a RTT, it is a signal that the receive window size
is so large that it takes too long to receive the entirety of
specified bytes. PSM-throttling will then decrease the receive
window size by two packets in order to recover from this
situation. If the observed average throughput is the same or
even higher than the average throughput in the previous period,
it is highly likely that the receive window size is still less
than the server-side buffer size. PSM-throttling will increase
the receive window size in order to drain off the server-side
buffer. Figure 8 illustrates this scheme. We will evaluate its
effectiveness in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we evaluate PSM-throttling based on a

prototype we have implemented. Figure 9 shows the archi-
tecture of the prototype system. The client runs Linux with
kernel 2.6.18, equipped with D-Link DWL-G520 wireless
card (Atheros chipset). We have implemented our protocol
based on the madwiffi driver 0 . 9 .2. In order to emulate
the bandwidth, the round trip time, and the loss rate of the
Internet bulk data transmission, we run NIST Net emula-
tor 2.0. 12b under Linux kernel 2.4.27. The experiments are
run with the prototype system to access Windows media
streaming, RealNetworks media streaming, YouTube pseudo
streaming, and common HTTP downloading. For Windows
and RealNetworks media streaming, we use MPlayer vil.Orcl1,
a movie player on Linux. MPlayer can support Windows media
service with MMS and RealNetworks media service with
RTSP protocol. The encoding bit rates of media objects used
in Windows streaming, RealNetworks streaming, and YouTube
pseudo streaming evaluations are 330 Kbps, 350 Kbps, and
300 Kbps, respectively. For YouTube, we test a YouTube video
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with the Adobe Flash Player plug-in for Linux. Due to page
limit, we only present our representative results conducted on
the Internet, the results of experiments in the lab environment
are similar and omitted.

Four different metrics are used for the performance com-

parisons of PSM-throttling with other four mechanisms. We
measure the average TCP throughput, the energy consumption,
the total object transmission time, and the total awake time of
the WNI when the experiments are conducted. PSM-throttling
(denoted as PSM-T on the figure) is evaluated against Con-
tinually Aware Mode (denoted as CAM), the Client-Centered
(denoted as CC) power saving approach [13], 802.11 power
saving mode (denoted as PSM), and a PSM adaptive (denoted
as PSM-A) approach used in commercial WNIs.

Among the four approaches we have implemented for per-
formance comparisons, with Continually Aware mode (CAM),
the client WNI always keeps awake even it is idle for a long
time. CAM can provide the best TCP performance since it
does not delay any packet. However, it consumes a significant
amount of energy due to continuous idle awake time. In
contrast, with 802.11 power saving mode (PSM), the client
WNI only wakes up to listen to the beacon message. When
there is a traffic notification in the beacon, the client polls the
access point to receive data, and then returns to sleep mode
again. Due to its significant impact to TCP throughput by
increasing the round trip time, PSM is rarely used in practise
although its power consumption is often quite low. We evaluate
this scheme here in order to have an idea on whether we can
achieve the minimum power consumption in our experiments.
The client-centered power saving approach (CC) aims to

reduce the energy consumption on TCP downloading without
increasing the product of energy and transmission delay, i.e.,
energy x delay, which could save energy consumption with
the cost of increased transmission time.

The PSM adaptive (PSM-A) approach has been widely used
in commercial products recently by switching between PSM
and CAM mode adaptively. Initially, the overhead of mode
switching on the WNI is non-trivial. With the help of advanced
hardware technologies, this overhead has been significantly
reduced. For example, as reported in 2003 [3], the mode
switching overhead could be as high as 100 ms for Cisco
Aironet wireless cards. In contrast, our experiments on latest
Atheros chipset WNI show this overhead is only about 4 ins.
As a result, recently many manufacturers of laptops and PDAs
have adopted this PSM adaptive method to save energy with
little network performance degradation. For example, with this
trivial mode switching overhead, the system built-in wireless
cards in IBM ThinkPad laptops can automatically go to sleep
after it is idle for 75 ins, and wake up when receiving a traffic
notification beacon.

Figures 10(a), 10(b), 10(c) and 10(d) show the throughput,
the energy consumption, the object transmission time, and
the WNI awake time, for Windows streaming media services

in different power saving approaches. As shown in Figure
10(a) and Figure 10(b), PSM-throttling achieves the maximal
throughput (same as that of CAM) and the minimum energy
consumption (about 25% of that in CAM) among all five
approaches. Compared to the most advanced mechanism used
in commercial products, the energy consumption of PSM-
throttling is only about 50% of PSM-A due to traffic reshaping
in PSM-throttling. This amount of power savings is due to
the minimum awake time of the WNI in PSM-throttling as
indicated on Figure 10(d) (in fact, the sleep time is often
comparable to awake time for bulk data transmission, and
thus does not contribute much for power consumption). For
Windows media streaming, PSM-throttling does not increase
the transmission time. Figure 10(c) shows that the transmission
time for all five approaches are similar (except for PSM). This
is because the streaming server transmits data in a low rate
continuously.

Figures 11I shows the corresponding results for RealNet-
works streaming media services. Similar to Windows media
streaming, PSM-throttling achieves the same throughput as
that of CAM while it consumes approximately the minimum
amount of energy among all five approaches. Again, it is only
about 25% of that in CAM and the most advanced PSM-A.
PSM degrades the QoS experienced by the user because the
throughput is reduced to be below 310 Kbps, while PSM-
throttling can maintain the desired media streaming quality
although its power consumption is a bit higher than that of
PSM. Comparing Figure 11I(b) to Figure 10(b), we find that the
energy consumption of PSM-A in Windows media streaming
is much smaller than that in RealNetworks media streaming.
The analysis reveals that for TCP-based streaming. Windows
media services send media data to the client in block. Thus, the
TCP streaming traffic of Windows media services is already
bursty. So the client in the PSM adaptive mode can go to
sleep to save energy after 75 ms of a burst. In contrast, in
RealNetworks media streaming, the server transmits media
data to the client packet by packet evenly. Since the interval
between two successive packets is small, the WNI of the client
cannot sleep.

Figures 12 shows our experimental results when YouTube
video is accessed with different power saving approaches.
Figure 12(a) shows that the throughput of PSM-throttling is
comparable to that of CAM. On the other hand, Figure 12(b)
shows the energy consumption of PSM-throttling is much less
than CAM and PSM adaptive. Our evaluation results also show
that the throughput and energy savings in CC are the worst
among the five. This is due to the largest transmission time
and awake time as shown in Figure 12(c) and Figure 12(d).
These results indicate that this scheme may not be suitable for
YouTube video services.

Fur HTTP downloading, Figures 13 shows the correspond-
ing results achieved by different power saving approaches. In
terms of power savings, Figure 13(b) shows PSM-throttling is
among the lowest of all schemes. The throughput achieved by
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Fig. 13. HTTP downloading with bandwidth throttling

PSM-throttling and PSM-A is close to CAM while PSM and
CC get the worst throughput as shown in Figure 13(a).

Our evaluation results show that PSM-throttling is very
effective for the widely used Internet TCP-based bandwidth
throttling services. However, for non-bandwidth throttling ser-

vices, although it can save power, it may increase the delay
due to degraded throughput. Thus, a trade-off must be carefully
balanced if PSM-throttling is used in such applications.
We also evaluate the effectiveness of PSM-throttling in

adaptation to server transmission fluctuations by playing an
RMVB (RealMedia Variable Bitrate) video. Figure 14 shows
that PSM-throttling is able to detect the change of server trans-
mission rate and achieve the similar transmission fluctuations
as CAM when the media encoding rate changes.

V. OTHER RELATED WORK

With pervasive wireless Internet accesses, research issues
of power saving and utilization on mobile devices have been
paid attention. For example, a self-tuning power management

131

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:28 from IEEE Xplore.  Restrictions apply.



mission rate is controlled by the server due to the high resource
demand per stream in media delivery [8]. Targeting such
applications, instead of manipulating the trade-off between the
power saving and application performance, our PSM-throttling
scheme aims to utilize under-utilized bandwidth to minimize
the power consumption of bandwidth throttling applications
without degrading user-perceived performance.

VI. CONCLUSION
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Fig. 14. PSM-throttling adaptation to server transmission fluctuations

approach to adapting the behavior of a station's WNI to the

access pattern and the intent of its applications is proposed

in [3], and a cooperative relay service to exploit the idle

communication power of WNI to improve network throughput

is studied in [7].

As power saving is critical to applications with long and

bulk data transmissions, a number of studies have focused on

Internet media applications. However, existing power saving

studies for media traffic mainly focus on UDP-based media

data transmissions. For example, work in [4] characterizes the

traffic patterns of Windows, Real, and QuickTime streaming

media services, and analyzes the implications on the energy

consumption on the WNI under varying stream bandwidth and

network loss rates. This paper shows 802.11 PSM does not

offer any energy savings for multimedia streams over 56 Kbps

for commercial access points. A number of packet prediction

algorithms have been proposed to put the WNI into sleep

and wake up the WNI based on the prediction of packet

arrivals, such as history-based prediction strategies [4] and

linear prediction-based strategy [12]. In addition to the proxy-

based work in [5], a priority-based bulk scheduling for proxy

buffering is proposed in order to provide delay assurance and

achieve power efficiency simultaneously [14].

However, TCP accounts for more than 90% media traffic

on the present Internet [8]. Due to the TCP congestion control

mechanism, the power saving for TCP-based streaming is

more difficult than UDP-based streaming, although a number

of studies have been conducted in order to reduce power

consumption for TCP-based communications. The effect of

prolonged connection round trip time on Web traffic has been

studied, and a bounded slowdown algorithm to save energy

and bound the throughput reduction within a specified range

is proposed [9]. While these existing studies aim to reduce

power consumption for applications constrained by the TCP

congestion control mechanism. nowadays on the Internet. for

many TCP based long and bulk data communications, such

as streaming, pseudo streaming, and file downloading, the

TCP congestion control is no longer a constraint with the

increasingly abundant Internet bandwidth. Instead, the trans-

Effectively saving the limited battery power of mobile

devices is a key issue for improving increasingly pervasive

wireless Internet accesses. Instead of further addressing the

trade-off between power-saving and the incurred delay of data

communications, we have explored a unique opportunity from

bandwidth throttling that has been widely adopted in practice.

Accordingly, in this paper, we have presented our design and

implementation of a new power saving protocol, called PSM-

throttling, to reduce power consumption on wireless devices

in bandwidth throttling bulk data communications. Our exper-

imental evaluation results show that PSM-throttling has the

following merits: (1) it can minimize the power consumption

of the WNI without degrading the application performance;

(2) it is client-centric and does not demand any infrastructure

support; and (3) it is application independent, and is highly

effective for both typical and emerging Internet applications.
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