
Coverage Without Location Information

Ossama Younis p
Applied Research, Telcordia Technologies
One Telcordia Dr., Piscataway, NJ 08854
Email: oyounis@research.telcordia.com

Abstract- When sensors are redundantly deployed, a subset of
senors should be selected to actively monitor the field (referred
to as a "cover"), while the rest of the sensors should be put
to sleep to conserve their batteries. We consider networks in
which all the nodes are not aware of their locations or the
relative directions of neighbors. We develop several geometric
and density-based tests for deciding whether a sensor should
turn itself off without degrading the quality of field coverage.
These tests rely on estimated neighbor distances and locally
advertised two-hop neighborhood information. We design an
algorithm (LUC) that exploits these tests for computing covers.
Based on LUC, we propose two distributed protocols (LUC-I
and LUC-P) that periodically select covers and switch between
them to extend "coverage time" and tolerate unexpected failures.
Our protocols are highly efficient in terms of message overhead
and processing complexity. We implement LUC-I in TinyOS and
evaluate it using the TOSSIM simulator. Experimental results
indicate that our approach significantly prolongs coverage time.

I. INTRODUCTION

Several applications, such as environmental monitoring,
require sensors be redundantly deployed to accommodate
unexpected failures and improve the fidelity of received mea-
surements. Redundancy means that some parts of the field
are covered by more than one sensor at the same time.
If idle sensors are not put to sleep, then redundant node
deployment does not necessarily improve the coverage time
of the field, defined as the time until the fraction of the
area that is monitored by at least one sensor falls below a
given threshold. This is because the sensor's radio expends a
significant portion of its battery lifetime in idle-listening to
support data forwarding, and thus active sensors tend to die
at roughly the same time. For example, the powers consumed
by the radio of the MICA2 mote [7] during idle-listening and
reception are almost the same, as reported in [2]. It was also
reported in [13] that in the WINS Rockwell seismic sensor the
power consumed in the receive and idle-listening modes are
0.36 mW and 0.34 mW, respectively. In contrast, the energy
consumed in the sleep mode of the MICA2 is three orders of
magnitude less than that during idle-listening.

Therefore, the network topology should be controlled by
selecting a subset of nodes to actively monitor the field and
putting the remaining nodes to sleep. More specifically, if the
set of nodes in the network is V, it is required to select a
subset VA C V that covers the entire area covered by V (VA

Marwan Krunz and Srinivasan Ramasubramanian
Dept. of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721
Email: {krunz,srini}@ece.arizona.edu

is referred to as a "cover"). The remaining set of nodes Vs
= V -VA can be put to sleep and later activated to form
new covers. Besides prolonging coverage time, reducing the
number of active nodes also reduces channel-contention and
collisions in the network.

Most proposed protocols for selecting sensor covers assume
that nodes can estimate their locations (via localization tech-
niques) or at least the directions of their neighbors (e.g., [9],
[16], [19], [20], [25]). Equipping every node with a GPS
is not cost effective, so localization is typically performed
by estimating distances between neighboring nodes (e.g.,
RADAR [3]) and triangulating positions using a small set
of location-aware anchor nodes (e.g., [5]). In this work, we
focus on applications in which network-wide localization is
unnecessary and possibly infeasible. Localization is unneces-
sary in applications that do not require reporting the location of
events. An example is a warfare scenario, where the detection
of any radiation or chemical activity is enough to alert the
troops to evacuate. Localization may also be infeasible due to
the failure or bad distribution of anchor nodes. Note that node
localization can be performed based only on distance estimates
and arbitrary selection of anchors. However, in practice, this
approach may result in failure to place some nodes due to
inaccurate estimation of distances [23]. Thus, we need new
redundancy check tests that are based on "distance ranges"
and not on "locations."

Contributions. In this work, we develop four tests for deter-
mining node redundancy, assuming that nodes are not aware
of their locations or the relative directions of neighbors. Two
of the proposed tests are geometrically provable, while the
other two are based on the dense random deployment. To
determine if a node v is redundant, our tests exploit the
two-hop neighborhood information advertised by v's one-hop
neighbors, as well as the estimated neighbor distances. We
propose a location-unaware coverage algorithm (LUC) that
incorporates our tests. Then, we design two computation-
ally efficient distributed protocols for periodically selecting
new active covers and switching between them. We refer
to these protocols as LUC-I and LUC-P (for iterative- and
probabilistic-LUC, respectively). We implement LUC-I in
TinyOS [17] and evaluate it in the context of a multi-hop
network application using the TOSSIM simulator [17]. To
the best of our knowledge, our work is the first to study
cover selection in the absence of information about the relative

1-4244-1588-8/07/$25.00 C2007 IEEE 51

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

locations of nodes.

The rest of the paper is organized as follows. Section II
briefly surveys related work. Section III introduces our re-
dundancy check tests. Section IV presents the LUC algorithm
and its associated protocols. In Section V, we study the
properties of our protocols via simulation. Section VI describes
our implementation of LUC-I in TinyOS and evaluates its
performance in the context of a multi-hop network application.
Finally, Section VII gives concluding remarks.

II. RELATED WORK

Several protocols were proposed for selecting sensor covers.
These protocols are either centralized (e.g., [6], [9], [12])
or distributed (e.g., [19], [20], [25]). They target either field
coverage, where a whole area is to be monitored, or target
coverage, where a set of targets in the field are to be monitored.

Cardei et al. [6] computed a number of set covers that
maximize the lifetime of the sensor network. They proposed
two centralized heuristic techniques for target coverage; one
uses linear programming and the other is a greedy approach.
We use the greedy approach in [6] as a baseline for com-
parison with our protocols (see Section V). Meguerdichian et
al. [12] proposed centralized algorithms for achieving both
deterministic and statistical coverage using Voronoi diagrams.
Slijepcevic and Potkonjak [15] proposed a centralized heuristic
to compute a disjoint maximal set of covers.

Several distributed algorithms were recently proposed.
Wang et al. proposed CCP [19], which probabilistically pro-
vides different degrees of coverage according to the appli-
cation requirements. Zhang and Hou proposed OGDC [25],
which determines the minimum set of working nodes by
reducing their overlap. They provided necessary conditions
on the ratio between the sensing and transmission ranges
to guarantee that coverage implies connectivity, and studied
the case where the sensing range is non-uniform. Tian and
Georganas [16] proposed a simple approach for selecting
covers based on checking the sponsored area, defined as the
area covered by other working neighbors. If the union of all
sponsored areas includes the sensing area of a sensor, then this
sensor decides to go to sleep. Gupta et al. [9] and Iyengar et
al. [10] proposed algorithms for selecting connected covers.
These algorithms do not enforce constraints on the relation
between sensing and transmission ranges. Yan et al. [20]
proposed a protocol for collaborative sleep and wakeup among
neighboring nodes, assuming that the network is synchronized.
Ye et al. [21] proposed the PEAS protocol that provides fault-
tolerance coverage using randomized sleep/wakeup schedules.
PEAS focused on maintaining network connectivity by peri-
odically awakening nodes to probe the active ones. Kumar et
al. [11] provided theoretical bounds on the number of nodes
required to achieve k-coverage.

All the aforementioned protocols assumed that nodes can
estimate their locations and/or the directions of their neighbors.

They also assumed that the employed localization mechanisms
can provide reasonably accurate location estimates of all the
nodes, which may be difficult in large-scale networks [23]. In
this work, we do not make any of these assumptions.

III. DETERMINING NODE REDUNDANCY

Below, we introduce our system model and describe our
proposed tests for determining node redundancy.

A. System Model

We consider sensor nodes for which Rt is the maximum
transmission range and R, is the maximum sensing range
(i.e., the distance from the sensor after which an event or
phenomenon is not detectable). We assume the following:

1) Nodes are randomly and redundantly deployed. They
have similar batteries and energy consumption rates.

2) Nodes have omni-directional antennae and do not pos-
sess localization capability. Thus, node locations and
relative directions of neighbors cannot be estimated.

3) Rt > 2R,. Under this condition, coverage implies
connectivity [25]. An example where this assumption
holds is the MICA2 mote [7], which has a maximum
communication range of about 1000 feet and a sensing
range of about 100 feet [20].

4) A node can estimate the distances to its one-hop
neighbors. This can be achieved using well-known ap-
proaches, such as time of flight or RF signal strength [3],
[24]. If transmission ranges are short, these approaches
can provide reasonably accurate estimates of one-hop
distances. For example, the Cricket sensor [7] uses
time of flight of packets for accurate ranging based on
ultrasound and RF beacons (effect of distance inaccuracy
is evaluated in Section V).

5) Links can be asymmetric due to radio range irregular-
ity [26]. A node decides whether it is redundant or not
based on the one-hop neighbors it is aware of.

B. Redundancy Check Tests

Let N(v, r) denote the set of neighbors of node v that lie
within a range r. Discovering such a set relies on an approach
that is described later in Section IV. A node can be in one of
three states: ACTIVE, ASLEEP, or UNDECIDED. All nodes
start in the UNDECIDED state. Let Vu denote the set of
undecided nodes. Note that V = VA U VS U Vu. Define wgt(v)
to be the weight of a node v in the network (e.g., its remaining
battery). We will use different definitions for wgt(v) in our
LUC-I and LUC-P protocols, described in Section IV.

We propose two geometrically proven tests (RTest-DI and
RTest-D2) and two density-based tests (RTest-HI and RTest-
H2) for determining node redundancy. RTest-DI and RTest-
D2 decide that a node is redundant only if its sensing region
is geometrically covered by active nodes. These tests assume

52

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

that node v's sensing capability is uniform in all directions
and thus v's sensing range can be approximated by a circle
C(v). RTest-HI and RTest-H2 decide that a node is redundant
if certain conditions on node density and distribution are
satisfied. They only require a node's sensing region be convex
but not necessarily circular.

RTest-D1: Node v is redundant if 3 three nodes vi, 1 <
K< 3, where: (1) vi C N(v,R,) Vi, (2) vi C VA Vi, (3) the

vi's are pairwise neighbors within range RS, (4) v lies inside
the triangle formed by the vi's, and (5) the circumference of
C(v) is covered by the C(vi)'s.

RS and computing the success ratio over 10,000 experiments
(we say that RTest-DI fails if the three neighbors form a
correct cover but the test cannot determine that). RTest-D1
showed a success ratio of about 57%.

RTest-D2: Node v is redundant if 3 three nodes vi, 1 <
i < 3, where (1) vi C N(v, 0.618R,) Vi, (2) vi C VA Vi, and
(3) the vi's are pairwise non-neighbors within range RS (i.e.,
Vi Uj7i N(vj , RS), Vi).
Lemma 2: RTest-D2 provides a sufficient condition for the

redundancy of node v.

d-
Fig. 1. Demonstrating RTest-Dl where v lies inside the triangle formed by
three of its neighbors.

RTest-Dl can be explained in the context of Figure 1 (we
use three neighbors in this test for tractability). Nodes vl,
V2, and V3 are active neighbors of node v and are pairwise
neighbors within range RS (the first three conditions). Two
conditions need to be satisfied. First, v should lie inside
the virtual triangle formed by the lines connecting the three
neighbors. Second, the sectors where the C(vi)'s intersect
with C(v) should completely cover C(v). For example, in
Figure 1, C(vl), C(v2) and C(V3) intersect C(v) in sectors
alva2, blvb2, and C1VC2, respectively. The challenge is how to
determine these sectors in the absence of location information.
We propose a simple approach to solve this problem. An
estimate of the distance between any two neighbors of v
can be determined (see Section IV-A.1), as well as two-hop
neighborhood. Thus, v can compute relative coordinates of
the vi's as follows. Node v assumes that it resides at (0,0) and
that v, resides at (d1,0), where d, is the estimated distance
between v and vl. It then uses the distance between itself and
V2 (V3) and the distance between v, and V2 (V3) to assign
coordinates for V2 (V3). Based on these coordinates, v can
determine whether or not it lies inside the triangle v1v2v3 and
can compute the intersection sectors.

Lemma 1: RTest-DI provides a sufficient condition for the
redundancy of node v.

Proof. It is trivial to show that if the conditions in RTest-
DI are satisfied then v's sensing range is covered. However,
these conditions may not be satisfied even though v's sensing
range is covered by active nodes. Thus, RTest-DI provides a
sufficient but not necessary condition for redundancy.

We empirically evaluated the conservativeness of RTest-D1
by randomly placing three neighbors of node v within range

Fig. 2. Determining the probing range (Rp) in RTest-D2.

Proof. Geometrically, if the centers of three circles lie
sufficiently close to the center of a fourth one, then the three
circles completely cover the fourth one. The problem is how
to determine the radius Rp of the largest probing circle in
which the three centers of C(vi), C(v2), and C(V3) lie and
completely cover C(v). Consider the scenario depicted in
Fig. 2. The worst-case organization (which results in the
smallest Rp) occurs when v, lies on the boundary of the
circle of radius Rp (probing circle), v2 lies on the boundary of
C(vi) and the probing circle, and V3 lies on the boundary of
C(v2) and the probing circle, such that C(V3) barely covers

defthe remaining region of C(v). Let a R, + Rp. From basic
geometry, we have:

a d x 1d2(d4+2R)(d+2R) d2,
d de

where d vliVlv3 1 as shown in Fig. 2. To compute d,
consider the angle g in Fig. 2. Clearly g = cos-'(RI'). Since

cos 1(x) sin 1i , g = sin-1 1 , which

p
R2~~~R2

results in d 2RP sin(g) = 2R 1 2. Thus, Rs+ Rp
4R - 4R (144)2). This results in the following quartic

equation: R4 - 5R2R2 - 2R3RP + 3R4 0. Solving forp 5 p 5 5

Rp yields: Rp = (v5/2 -1/2)Rs5 0.618Rs. Thus, if the
conditions provided in RTest-D2 are satisfied for node v, we
can assert that v is redundant. However, the converse is not
true (i.e., RTest-D2 is a sufficient condition for redundancy).

Our empirical evaluation of the conservativeness of RTest-
D2 indicates a success ratio of 3.2%. However, this test is still
useful since it is computationally cheap and shows significant

53

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

success when individually applied in dense settings, as shown
in Section V.

Since RTest-DI and RTest-D2 only provide sufficient con-
ditions for determining node's redundancy, we provide other
tests (RTest-HI and RTest-H2) that exploit conditions on node
density to improve the confidence in determining redundancy.

RTest-H1: A node v is redundant if (1) 3S = {vi C VA:
vi C N(v,Rs),1 < i < M,M > 4}, and (2) N(v,RS) C

U21 N(vi, RS).
RTest-HI says that if v has M > 4 active neighbors within

distance RS and if every neighbor of v is also a neighbor
of one or more of these M active neighbors, then v is
considered redundant. The choice of four neighbors stems
from the fact that the network is "sufficiently" dense (as
defined below) when each node has neighbors in all directions
(north, south, east, and west). The density model defined below
is an extension of the work in [4].

Lemma 3: Assume that n nodes with sensing range RS are
deployed uniformly and independently in a field F = [0, L]2.
Let F be divided into 5L2/R2 square cells, each of side length
Rs/ 5. Let R2n = aL2 ln L, for some a > 0 such that RS <
L and n > 1. If a > 10, then IimL, E(,o(n)) = 0, where
/lo (n) is a random variable that denotes the number of empty
cells in F.

The lemma states that if the network area is divided into
small square regions (cells), and if n and RS satisfy a certain
constraint, then every cell will contain at least one sensor
asymptotically almost surely (a.a.s.). Consequently, every node
(except those at the borders) will have at least one neighbor
in each of the four main directions. The proof of Lemma 3
is a straightforward extension of the one provided in [4] for
one-dimensional networks. We omit it here for brevity'.

Lemma 4: If the density model provided in Lemma 3 is
satisfied, then RTest-HI correctly determines whether v should
be put to sleep.

Proof. Consider the scenario depicted in Fig. 3. Assume a
worst-case configuration in which all the active neighbors of
node v (vl, v2, V3, and V4) are placed in B. Also assume
that one undecided neighbor v5 is placed on the boundary of
A while the rest of the neighbors are all asleep. We prove
Lemma 4 by contradiction. Assume that v is put to sleep
although cell C is not covered. Now, consider a node u that
resides in D. If u is active, then C is covered. If u is not active,
then u5 must be included in the probing neighborhood of u's
active neighbors. This also implies that C will be covered,
which contradicts the original supposition.

The above argument may only be violated at the cells on the
corners of the network area. This does not affect the coverage
of the field since the number of cells is supposedly > 1. Our

'We chose R/55 as our cell dimension to allow a node to completely
cover neighboring cells in the four main directions. This is different from the
cell definition used in [4].

1R I's 1'
I

I

all

P

D u

B

v,v,v V.

Fig. 3. Correctness of RTest-HI. {v, u V,V.., v5} identify nodes while
{A, B, C, D} identify square cells within the network area.

simulation experiments (Section V) indicate that RTest-HI is
the most effective in redundancy elimination.

RTest-H2: Assume that nodes are uniformly and redun-
dantly deployed. A node v is considered redundant iftS =

{vi: vi C N(V, FRS), vi C (VA U Vu), 1 < i <'}, where a is
a constant, such that (1) wgt(v) < wgt(vi) Vvi C S, and (2)
N(v, FRS) C U7 1 N(vi, RS).

Unlike previous tests, RTest-H2 aims at turning off "weak"
nodes in the network. It checks if node v has at least -y active
or undecided neighbors within distance RS, and if every other
neighbor of v is also a neighbor of one or more of these
-y neighbors. Node v is then put to sleep if its weight is
the smallest among the -y neighbors. The rationale for this
test is that if nodes are uniformly deployed, then v will have
neighbors in all directions (as assumed in RTest-H1), which
are likely to cover the entire sensing region of v. Putting v to
sleep early will force "stronger" neighbors to become active.
We recommend iy > 4 to avoid leaving uncovered holes (we
use ' 6 in Section V).

IV. LOCATION-UNAWARE COVERAGE

Based on the proposed redundancy check tests, we now
present the LUC algorithm and present two distributed proto-
cols to realize it in operational scenarios.

A. LUC Algorithm

1) Distance Estimation: The LUC algorithm at node v
proceeds as follows. Node v discovers its neighbors within
the range Rt (its maximum transmission range) and their
approximate distances (estimated using the time of flight
and/or received signal strength, as described in Section III-A).
To accommodate uncertainties due to fading, reflection, and
radio sensitivity, we use a conservative approach to estimate
distances in which Rt is divided into a discrete set of nd
distances2 and every range of signal strengths is mapped to
one of these distances (similar to radio maps [24]). Every
node broadcasts the estimated distances to its neighbors so that
every node is aware of its 2-hop neighborhood. Our simulation
experiments in Section V show that imprecision in distance

2We refer to nd as the "discretization level."

54

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

estimation does not affect the performance of our protocols.
This is due to the efficiency of RTest-HI.

2) Activation Test: LUC uses an activation test (ATest) that
adds an undecided node v to VA if v has the highest weight
among its undecided neighbors (note that the weight is a real
number and thus no ties occur). The test is necessary to seed
the network with active nodes and force "stronger" nodes to
be active, giving an opportunity for putting "weaker" nodes to
sleep. This has a desirable effect of keeping every individual
node alive as long as possible for better reliability against
unexpected node failures.

ATest: A node v C Vu is added to VA if for every node
u C N(V, RS) with u C Vu, we have wgt(u) < wgt(v).

3) Order of Test Execution: The flowchart of the LUC
algorithm is provided in Fig. 4. LUC executes the geometric
tests before the density-based ones since they guarantee no

false positives (erroneously putting a necessary node to sleep)
even under arbitrary node distributions. RTest-HI is invoked
only when the node is about to make a decision because
it is the most aggressive test, as shown in Section V. The
RCheck(v, mustDecide) function in Fig. 4 checks whether a

node must make a decision (ACTIVE/ASLEEP) or can remain
in the UNDECIDED state. If mustDecide=l, then the node
must make a decision regardless of the status of its neighbors.

Initialize.v) Discover N(v, R t) at diff. probing ranges
Set S N(v Rd) S. N(v 0 618R

RCheck(NODE v, BOOLEAN mustDecide)

Fig. 4. The LUC algorithm.

B. Iterative LUC (LUC-I) Protocol

We refer to this protocol as "Iterative LUC" (LUC-I)
because a node does not decide to be active unless all its
neighbors that are within range R, and having higher weights
have made their decisions. However, a node can put itself to
sleep once any redundancy check test is satisfied. In LUC-
I, the weight of the node is selected in a way that favors

activating nodes with higher residual energy. Thus, the weight
of node v is set to:

wgt(v) = e(v)
e(V) + Z:N(v,R,l e(i)

(1)

where e(v) is the residual energy of node v and N(v, R,)
is the number of v's neighbors within range R, LUC-I has
3 phases. The first phase is a neighbor discovery phase that
runs for tnd seconds. By the end of this phase, v will have
discovered its neighbors and their weights, and computed the
neighbor sets Si and S2. Node v then starts the coverage

process, which runs for t,P seconds. Whenever v receives
an update from one of its neighbors changing its state to
ACTIVE, it executes RCheck with mustDecide=O (see Fig. 4).
If v decides that it is redundant, it does not wait until the
end of the tcp interval and immediately goes to sleep. If v
decides to become active, it broadcasts its new state and keeps
checking its redundancy whenever one of its probing neighbors
becomes active. This continues until the end of the tcp interval
(in order to allow v to prune itself from VA if possible).
If the tcp interval expires before v has made a decision, v

executes RCheck one last time with mustDecide = 1. LUC-I is
re-invoked every tc,, seconds, which we refer to as the "cover
update" interval. The pseudo-code for the LUC-I protocol is
provided in Fig. 5.

Fig. 5. Pseudo-code for the LUC-I protocol executed at node v.

C. Probabilistic LUC (LUC-P) Protocol

Under worst-case distribution of node weights, where every

node has to wait for another one, the convergence of LUC-
I will be dependent on the number of nodes (Section IV-D).
This motivates the need for another protocol in which nodes
autonomously decide to join VA or Vs within a fixed number
of iterations, regardless of the network size. In the probabilistic
LUC protocol (LUC-P), a node v is added to VA according to
an activation probability Po, that corresponds to the remaining
energy in v. This way, decision-making is implicitly based on

node weights without needing to exchange information among

55

LUC-I(v)
1. Initiate timer Ti for tnd seconds (neighbor discovery)
2. After Ti expires:

2.1. Compute SI and S2 as in Fig. 4
2.2. Initiate timer T2 for tcp seconds (coverage process)
2.3. RCheck(v, 0)
2.4. If (v.state = ASLEEP), stop T2 and exit

3. While T2 has not expired
3.1. If an update is receivedfrom u, u C S3

3.1.1. If (v.state = UNDECIDED), RCheck(v, 0)
3.1.2. Else RCheck(v, 1)
3.1.3. If (v.state = ASLEEP), stop T2 and exit

4. After T2 expires
4.1. If (v.state = UNDECIDED), RCheck(v, 1)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

neighbors. Pseudo-code for the LUC-P protocol can be found
in [22].

The neighbor discovery phase in LUC-P is similar to that
of LUC-I. At the start of the coverage process phase, node v
initializes an activation probability Pon as follows:

POen=() + ZN(vR) e(i)P'min < Pon < 1 (2)

where Pstart is an initial probability that is periodically dou-
bled by every node. Increasing Pstart leads to an increase in
Pon and this causes the set of active nodes to grow gradually.
Pmin is the smallest allowed value for Pon. As described
below, Pmin ensures that LUC-P terminates in a constant
number of iterations. Node v initializes timers Ti and T2 as
in LUC-I. A new timer T3 is also initialized to tat (activation
test) seconds in order to periodically check v's eligibility to
join VA. Whenever T3 expires during the coverage process,
v checks whether it can go to sleep. If not, v uses its Pon to
probabilistically set itself to the ACTIVE state. If the activation
test is successful, v performs RTest-HI before committing
itself to VA. If v does not pass the activation test, it doubles
its Pstart value and re-evaluates Pon. As in LUC-I, if v has
decided to become active, it is still allowed to prune itself from
VA if it becomes redundant before T2 expires. If T2 expires
and v is still in the UNDECIDED state, v decides to become
active. Ideally, the tat value of T3 should be selected such that
V's Pon probability is allowed to grow to 1 before T2 expires.
Since Pmin is constant, the maximum number of iterations
until Pon reaches 1 (Nmax) is also constant (computed below).
Therefore, tat should be selected as tat = tcp/Nmax.

D. Analysis

Correctness. Three observations can be made about our LUC
protocols. First, when the protocols terminate, every node in
the network will have joined VA or Vs. Second, the area
covered by the nodes in VA is equal to that covered if all
the nodes in V are active. Third, applying the LUC protocols
improves coverage time and reliability in the network. The
first observation stems from the fact that every node is forced
to decide after a timer expires (T2 in LUC-I or T3 in LUC-
P) to avoid waiting indefinitely for neighbors that may have
failed. The second observation follows from the sequential
construction of VA according to node weights. A node whose
sensing range is not completely covered will fail all the
redundancy check tests and will have to be activated. Note that
the size of the selected cover is governed by the quality of the
redundancy check tests and not the operation of the protocols.
The third observation is due to the refreshment of VA every
t,,, interval, which results in distributing energy consumption
and extending the lifetime of every individual sensor.

Time Complexity. The time complexity of our LUC protocols
is defined in terms of: (1) the average number of iterations until
convergence (Niter), and (2) the processing time at each node.
An "iteration" is defined as one attempt by a node to decide

whether to go to sleep or continue executing the LUC protocol.
In LUC-I, Niter - 0(n) in the worst-case (very rare). To
bound the convergence time of LUC-I, we limit the time of
the coverage process by a timer (as described in Section IV-
B). The worst-case Niter for LUC-P is 1log2 1 + 1. For
example, for Pmin = 0.01, Nit,, = 8 iterations.

The processing complexity of the LUC algorithm is not
significant. For a node v, RTest-DI and RTest-D2 take O(n3)
in the worst case, where na is the number of active neighbors
of v. RTest-HI and RTest-H2 take O(nb) time, where nb is
the number of neighbors within range RS. ATest takes 0(na)
time for LUC-I and 0(1) time for LUC-P.

Message overhead. In the LUC protocols, each node sends
one message to announce its information (e.g., identifier
and remaining energy), another message to announce its 1-
hop neighbors and their proximities, and a third message to
announce its decision (ACTIVE/ASLEEP), if any. Therefore,
0(1) messages are required per node.

V. SIMULATION EXPERIMENTS

We first focus on the construction of one cover only and
assume that n nodes are randomly distributed in a 50 x 50
meters2 field (n = 1000, unless otherwise specified). We focus
on a snapshot during network operation where the residual
energy of each node is a uniformly distributed fraction between
0 and 1. We choose nd = 10 (other values did not have a
noticeable effect on LUC's performance). Every point in our
results is the average of 10 experiments of different random
topologies. We focus on the following metrics: (1) size of the
active set VA, (2) coverage redundancy, (3) coverage quality,
and (4) average residual energy in VA. Coverage quality is
defined as the fraction of the field area covered by VA.
Coverage redundancy is defined as the minimum number of
sensors covering any point in the sensing range of any active
sensor. Thus, the optimal value for coverage redundancy is 1.

We compare LUC-I and LUC-P to a centralized approach
(Greedy-MSC) [6] and a distributed approach [16] that assume
complete knowledge of node locations. Although Greedy-
MSC was proposed for target coverage and not area coverage,
we generalize it by discretizing the area into a large number
of points (targets). Individual cover selection in Greedy-MSC
follows the approximation algorithm in [8], which tries to
minimize the size of every VA. Thus, we conjecture that
its selected VA will be smaller than that selected by any
distributed protocol. The distributed approach in [16] uses a
geometric test assuming that relative node locations are known.
Every node v is initially active and has a randomly set timer T.
When T expires, v checks if the areas covered by its currently
active neighbors (referred to as sponsored sectors) completely
span its sensing range. If so, then v decides to go to sleep.
We refer to this approach as SP-SECT.

Fig. 6(a) depicts the size of VA (VA) as a function of the
sensing range. As expected, IVAI drops for all the compared

56

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

5'

4'

3(

2(

1'

DO
LUC-

DO ~~~LUG-P x
SP-SEGT

GREEDY-MSGC

0
3 4 5 6 7 8 9 10

Sensing range (meters
(a) Size of VA (n= 1000)

1.4

0)

C: 1.1
-0

o 12-0

LUG-1i
LUG-P ------

SP-SEGT -....

Greedy-MSG .A...

0.9 'I I

200 500 800 1100 1400 1700 2000

Number of nodes

(b) Coverage redundancy (R =6)

a)

0)

0
-0

a)

0

0

U-

0.9

0.95

0.85

0.8'

200 500 800 1100 1400 1700 2000

Number of nodes

(c) Quality of field coverage (R,=3)

0

0> 0.8
a)

a)

0.6:

-4
A."

-X---A-- -x---x---X-,I
't,

-

00)

LUG-P

SP-SEGT

GREEDY-MSGC
200 500 800 1100 1400 1700 2000

Number of nodes

(d) Average energy in VA nodes (R,=6)

Fig. 6. Performance of LUC-1 and LUC-P in contrast to SP-SECT and Greedy-MSC.

protocols as R, increases. VA of LUC-1 and LUC-P is

about 20 50% larger than that generated by Greedy-MSC and

is about 10-35% smaller than that of SP-SECT. This is a

very good result given that our protocols are distributed and

location-unaware. LUC-P generates a set VA that is about 2-

10% larger than that of LUC-1.

Fig. 6(b) shows that all protocols have coverage redundan-

cies that are about 3-6% from the optimal value (except for

SP-SECT which goes to 10% redundancy for large densities).

This indicates that our LUC protocols are able to compute

near-minimal covers (a minimal cover is one in which every

sensor is necessary for field coverage).

Fig. 6(c) shows that all the compared protocols have similar

coverage quality, which is governed by the node density. We

also study the quality of the selected VA in terms of the

average battery levels of nodes included in it. Selecting active

nodes that are richer in energy than their peers is important for

maximizing the lifetime of every individual sensor. Fig. 6(d)

illustrates that LUC-1 and LUC-P select nodes that have higher

average residual energy compared to SP-SECT and Greedy-

MSC.

We also assess the performance of our proposed tests. We

fix R, at six meters and vary ni. Figure 7(a) shows the fraction

of the nodes that are put to sleep by each test (compared to

the total number of deployed nodes) when the original LUC

algorithm is applied. The figure indicates that the density-

based tests are very effective in eliminating redundancy. This is

because they can put a node to sleep faster than the geometric

tests. The effectiveness of the geometric tests is demonstrated

in Figure 7(b), where each test is applied individually (i.e.,

without the application of the other test). Coverage quality is

not compromised under any test, as shown earlier.

Now, we assess the impact of our protocols on coverage

time and consider a simple operational scenario in which the

energy consumed by a node's radio is dominated by the wake

state. We deduct a fixed amount of energy from the node's

battery according to its state. Every node starts with a full

battery of Joule, and consumes 10-4 Watts while being

active and 10-7 Watts while being asleep. We take R, =

CO

a)

a)

Co

0)

V0
0

0)

0.8

0.6

0.4

0.2
F.

RTest-Dl1
RTest-D2 ---x---

RTest-H1 ...5.E

I ~~~~RTest-H2 ... A.....

..AA.

Co

0)

0)

Co

0)

V0
0

0)

200 500 800 1100 1400 1700 2000

Number of nodes

(a)

0.8

0.6

0.4

RTest-D2

RTest-H1 n3

RTest-H2

0'

200 500 800 1100 1400 1700 2000

Number of nodes

(b)

Fig. 7. Evaluating the percentage of nodes put to sleep by our tests when

applied: (a) in combination, or (b) individually.

6 meters and update the network cover every 100 seconds.

Fig. 8(a) shows the fraction of the field that is covered by

active nodes when ni = 500 nodes. If none of the nodes is

allowed to sleep, the network becomes completely uncovered

after 100 time steps (a time step corresponds to 100 seconds).

Redundancy elimination within a sleep/wakeup mechanism

improves coverage time by a factor of 3 to 6. The figure shows

that LUC-I and SP-SECT behave similarly. This is a very good

result given that LUC-I is location-unaware. The difference

in coverage time between LUC-P and LUC-I is attributed to

the fact that the latter selects a smaller VA at smaller node

densities. Fig. 8(b) shows that the discretization level of the

radio range (rid) has an unnoticeable effect on coverage time

in LUC-I. This is attributed to the effectiveness of RTest-HI.

VI. IMPLEMENTATION

We implement LUC-I within the TinyOS [17] operating

system. Since in our protocols, the weight of a node depends

on the remaining battery, we augment TinyOS with an energy

dissipation model (explained below) that is based on the radio

of Berkeley MICA2 mote [7]. We also integrate a TinyOS

multi-hop network application with LUC-I to evaluate an

operational scenario. In this application, reports are period-

ically transmitted to an observer (Surge) [1], [17]. While

constructing the routing tree, nodes that can communicate

directly with the sink are labeled "level-I" nodes. Nodes that

57

Co

a)
-0
0)

0

0)

E
z

I

I

1

0.2
11

c

11
1.3-9-2-'e a,

II

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

0.9~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

3~> 0

0

MUC

mSE C cx2.

Greedy-msc ~c

nTur e me e

preo rt edol b14] de rM incAcu ote conistac s d s

oFi 8 nt cnc i i h aR i, ndmtes

cansensingmdevic.th it eoprtonalenvergyu consumptioniofta

componentl nodis given lbyeleVdxlvl2 Anoxes, Vo,ois

voltag xea ross nts, the cure d rawm n tby cp 'sw cr cuits

andsureis nthe epotae c14 coemplet mop erat on. iFor

exampe,vterrdiofmonethe MnluiCAasensesorraw madiwhile

receivng.Asingngvie That Vperat3oVolt andrg thesuradioin thea

rc eivoe nm 1s ndvtenby - = A ile the r adVio is

inthe soleepe mcode,candassumighnouretheractivtie cins thecmote,
adurings slmeep taken 1y cA thmperefore, oerati3on. For

exanmple,itne thei ofhte PA PenoW dregisrmdehrines

thceidrang csurrent htV otand thetrnsisindageior isnstane,

assuming that the mote consumes mW during transmission

(which corresponds to 16.8 mA), the bit transmission time

is 62.4 ,usec (as measured in [14]), and the packet size is

36 bytes, t.i for one packet transmission is 0.9 mJ. In our

evaluation, we transform the energy cost into integer values.

A. System Design

We discuss the design details of the multi-hop routing

module in TinyOS [1] when augmented with our LUC-1

protocol. LUC-1 extends the existing multi-hop router by

adding the cover selection logic, which is executed prior to

parent selection in the routing tree. This adds about 100 lines

of code to the TinyOS code3. Most of this code is added to the

module responsible for parent selection. We used a packet size

of 100 bytes in the Surge application to accommodate larger

routing tables (the default packet size in TinyOS is 36 bytes).

Enlarging the packet size was needed to facilitate evaluation

of the code, and is not a requirement of our design.

The schematic diagram for the extended multi-hop router is

provided in Fig. 9 (extension to that in [1]). RoutingLogicM is

3The complete implementation can be obtained by contacting the authors.

Module 7configuration 11 --- interf Prowider Def'n U erModule~ ConfiguratIo InterfaceName 0* Name

Fig. 9. Multi-Hop routing in TinyOS augmented with LUC-1 and energy
control. Arrows show interface provider/user relationships.

the module that performs the cover selection. It also executes
the link estimation and parent selection (LEPS) algorithms.
Parent selection is responsible for estimating the link cost for
each neighbor based on the "quality" of communications and
its proximity to the observer [18].

Our extended design introduces an energy monitor interface
(EnergyMonitor), which is used to deduct energy during
transmission, reception, and sleep cycles. In our evaluation,
we ignore the energy consumed in processing and sensing.
The "Multihop Router" uses the energy monitor to inform
the application whether the battery is still operational. The
application uses this information to stop data transmission.
The Comm interface, illustrated in Fig. 9. is responsible
for packet capture and transmission. The Message ID is
used to identify whether the packet is an application packet
(AM-SURGEMSG) that is sent through the MultihopEngineM
module or a routing update packet (AM-MULTIHOPMSG)
that is sent through the RoutingLogicM module. The Queued-
Send interface is responsible for buffering packets to be sent
in sequence. Details of the Comm and QueuedSend interfaces
can be found in [17].

We implemented new timers to support the operation of
LUC-I, as was described in Fig. 5. When the LUC algorithm
is triggered, a node that is in the ASLEEP state moves to the
UNDECIDED state and starts the neighbor discovery phase.
On the other hand, a node that is initially in the ACTIVE
state moves to another state called ACTIVE-UNDECIDED.
In this state, a node continues to send data packets as usual
while executing LUC-1 so as not to interrupt the network
operation. The benefit of this approach will become apparent
in the results shown in Section VI-B. A state diagram of a
node executing LUC-1 is depicted in Fig. 10.

58

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

LUG triggered Neiho

ACTIVE-UNDECIDED discvr

AC -IVEF UDxpired N IE
T2 expired or LUC-I triggered

decided to beco e activ

Coverag ASLEEP N

poes T2 expired or operation
decided to go to sleep

Fig. 10. State diagram for a node executing LUC-1. A circle indicates an
action, while a rectangle indicates the new state of the node.

To asynchronously trigger LUC-1 in the network, node v
whose timer T2 has expired immediately broadcasts a routing
update packet to its immediate neighbors, indicating that v is
starting LUC-1. Upon receiving this message, the neighbors of
v that are close to completing their cycle (i.e., more than 0.5
t,, has passed since the cycle started) trigger the execution of
the LUC-1 algorithm and re-initialize their T2 timers. Hence,
the start of the coverage process diffuses throughout the
entire network. Thus, triggering LUC-1 only requires a routing
update message. For a realistic scenario where the battery
lifetime is in the range of months, LUC-1 will be triggered
at a coarse granularity, e.g., hours or days.

B. Performance Evaluation

We conducted experiments to compare the performance of
our extended SurgeILUC-1 implementation (which we refer to
as "LUC-1" for brevity) and the original Surge application that
is included in the TinyOS software [17]. We used the TOSSIM
discrete-event simulator, which is included with the TinyOS
release, to evaluate our implementation. TOSSIM has several
advantages: (1) it runs actual TinyOS implementations, (2) it
allows experimentation with a large number of nodes, (3) it
accurately captures the TinyOS behavior at a low level (e.g.,
timer interrupts), and (4) it models the CSMA/CA MAC layer
of the node. Therefore, imperfections, such as interference and
packet collisions, are accounted for.

The parameters used in our experiments are as follows:
nr= 75, field size L =50 x 50 meters2 (from (0,0) to (50,50)),
the observer is at (25,50), maximum battery = 6 x 107 points,
energy consumption (receive) = 24000 points/sec, energy
consumption (sleep) = 3 points/sec, packet size = 100 bytes,
packet transmission time = 49.92 ins, current (transmission)
= 10.1-18.5 mA, data rate = 1 packet/1O sec, routing update
= 1 packet/i5 sec, nd = 10, td = 20 sec, t,p = 20 sec, and
t,,= 300 sec. t,, is the time until LUC-1 is re-triggered.

Every node has to wait for tnd to collect information about
its neighbors. However, a node can terminate LUC-1 any time
during the ensuing t,p interval if a sleep decision has been
made. The values Of tnd and tcp are selected in a way to allow
for at least one routing update to arrive from every neighboring
node. The energy consumed during transmission depends on
the PA-POW value, provided in the data sheets of the MICA2

radio. For simplicity, we assume that Rt = 16 meters, which
corresponds to a drawn current of 10.1 mA (from the MICA2
CCI1000 radio datasheet), and every one-meter increase in Rt
corresponds to the next current value reported in the data sheet.
The maximum battery lifetime is selected to be a fraction
of the maximum possible for 2 AA batteries of a MICA2
sensor All the nodes start their operation randomly within an
interval [0,5] seconds from the start of the simulation. In our

experiments, the depth of the routing tree varies from 2 to 5
according to the specified transmission range and link quality.
We define coverage time here as the time until the observer

cannot receive any reports. This occurs when all level-I nodes
deplete their energy. Fig. 11 shows the coverage times for
LUC-1 and Surge, where LUC-1 refreshes VA every t,, 300
seconds. LUC-1 provides 100-200% improvement in coverage
tine over Surge. The amount of gain is affected by two factors:
(1) the size of Vs, and (2) the frequency of updating VA (t,,,).
For ni = 75 nodes and R, = 12.5 meters, LUC-1 achieves a

Vs of size 20-40 nodes, i.e., about 30-60% of ni. The effect
of reducing the size of the active set is apparent only when
more level-I nodes are put to sleep.

8000 1I

la)
a)A

a)

a)
0)

a-)

7000

6000

5000

4000

3000

2000

LUC-I 1-
Surge ---x

8 9 10 1 1 1 2
Sensing range (meters)

Fig. II. Coverage time for LUC-1 and Surge (t,,, 300 sec).

We also report the number of nodes that fail during opera-
tion due to energy depletion with R, = 12.5 meters and t,, =

300 seconds. Fig. 12 shows that most of the nodes die quickly
in the original Surge application. This detrimental effect is due
to the continuous listening of all nodes. As for LUC-1, nodes
fail gradually because of their periodic sleep/wake-up, which
reduces energy consumption among redundant nodes. The time
at which a node dies depends on how frequently it was put to
sleep during the network operation.

To measure the quality of coverage, the observer keeps
track of the nodes from which it has received reports within
T, seconds, where T, 20 sec. Fig. 13 demonstrates the
coverage quality as time evolves for different t,, intervals.
An important observation to be made is that LUC-1 keeps the
field completely covered even when the number of sleeping
nodes is as large as n/2. Other results (shown in [22]), indicate
that the best coverage time is achieved at t,,,=300 seconds.
Choosing the appropriate value for t,, to optimize coverage
time remains an open issue.

59

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

75

-'O 60
0

(Z 45a)

-0 30-
a)
E
1 15
z

0L
0 2000 4000

Time (sec)
6000 8000

Fig. 12. Node failure rate.

a1)

0)

0

0

U-

0.5 k

UB 100% Cov
LUG-I k(t0=500)
LUG-I (tcu=300)LUG-I (t 00=o)
0 Surge -------

1000 3000 5000 7000
Time (sec)

Fig. 13. Coverage quality for R, 12.5 meters and different t,, values.

VII. CONCLUSIONS

We proposed a novel distributed approach for cover selec-
tion in the absence of location information. Our redundancy
check tests rely on locally advertised neighborhood intorma-
tion and estimated neighbor distances. We incorporated our
tests into a novel coverage algorithm (LUC), and designed
two distributed protocols (LUC-1 and LUC-P) that realize
LUC in multi-hop sensor networks. Our LUC protocols incur
low overhead and can significantly reduce the set of active
nodes. Simulations showed that the coverage-time extensions
achieved by our protocols are comparable to those achieved
by a typical distributed protocol and close to those achieved
by another centralized protocol, both assuming knowledge of
node locations (unlike our protocols). We implemented the
LUC-1 protocol in TinyOS and incorporated it in a network
application used for data aggregation. Experimental results
show that LUC-1 significantly improves coverage time.

VIII. ACKNOWLEDGEMENTS

This work was supported by the National Science Foun-
dation under grants CNS-06271 18, CNS-03 13234, CNS-
0325979, and CNS-0435490.

REFERENCES

[1] Multihop routing for TinyOS.
I.x/doc/multihop/multihop-routing.html.

http:Hlwww.tinyos.netltinyos-

[2] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori. Perfor-
mance measurements of motes sensor networks. In Proc. of MSWiM,
Oct. 2004.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based
user location tracking system. In Proc. of the IEEE INFOCOM Conf,
Mar. 2000.

[4] D. M. Blough and P. Santi. Investigating upper bounds on network
lifetime extension for cell-based energy conservation techniques in
stationary ad hoc networks. In Proc. of the ACM MobiCom Conf, 2002.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost outdoor
localization for very small devices. IEEE Personal Communications
Magazine, 7(5):28-34, Oct. 2000.

[6] M. Cardei, M. T. Thai, Y Li, and W. Wu. Energy-efficient target
coverage in wireless sensor networks. In Proc. of the IEEE INFOCOM
Conf., Mar. 2005.

[7] Crossbow Technology Inc., http://www.xbow.coim', 2007.
[8] U. Feige. A threshold of In n for approximating set cover. Journal of

the ACM, 45(4):634-652, July 1998.
[9] H. Gupta, S. Das, and Q. Gu. Connected sensor cover: Self organization

of sensor networks for efficient query execution. In Proc. of the
ACM International Symposium on Mobile and Ad-Hoc Networking and
Computing (MobiHoc), June 2003.

[10] R. lyengar, K. Kar, and S. Banerjee. Low-coordination topologies for
redundancy in sensor networks. In Proc. of the ACM International Sym-
posium on Mobile and Ad-Hoc Networking and Computing (MobiHoc),
May 2005.

[11] 5. Kumar, T. H. Lai, and J. Balogh. On k-coverage in a mostly sleeping
sensor network. In Proc. of the ACM MobiCom Conf, Sep. 2004.

[12] 5. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava.
Coverage problems in wireless ad-hoc sensor networks. In Proc. of
the IEEE INFOCOM Conf., Anchorage, Alaska, Apr. 2001.

[13] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy-aware
wireless microsensor networks. IEEE Signal Processing Magazine,
19:40 50, 2002.

[14] V. Shnayder, M. Hempstead, B.-R. C. C. Werner, and M. Welsh. Simu-
lating the power consumption of large-scale sensor network applications.
In Proc. of the ACM Conf on Embedded Networked Sensor Systems
(ACM SenSys), Nov. 2004.

[15] 5. Slijepsevic and M. Potkonjak. Power efficient organization of
wireless sensor networks. In Proc. of the IEEE International Conf.
on Communications (ICC), June 2001.

[16] D. Tian and N. D. Georganas. A coverage-preserving node scheduling
scheme for large wireless sensor networks. In Proc. of the First ACM
Workshop on Wireless Sensor Networks and Applications, Sep. 2002.

[17] TinyOS. http://www.tinyos.net, 2006.
[18] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of

reliable multihop routing in sensor networks. In Proc. of the ACM Conf.
on Embedded Networked Sensor Systems (ACM SenSys), Nov. 2003.

L19J G1. Xing, X. Wang, Y. Lhang, C. Lu, R. Pless, and C. Gill. Integrated
coverage and connectivity configuration for energy conservation in
sensor networks. ACM Transactions on Sensor Networks, 1(l):36-72,
Aug. 2005.

[20] T. Yan, T. He, and J. Stankovic. Differentiated surveillance for sensor
networks. In Proc. of the ACM Conf. on Embedded Networked Sensor
Systems (ACM SenSys), Nov. 2003.

[21] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A robust energy conserving
protocol for long-lived sensor networks. In Proc. of the IEEE Int'l Conf.
on Distributed Computing Systems, 2003.

[22] 0. Younis, M. Krunz, and S. Ramasubramanian. On maximizing
coverage time in location-unaware wireless sensor networks. Technical
report, University of Arizona, July 2006.

[23] 0. Younis, S. Ramasubramanian, and M. Krunz. Location-unaware
sensing range assignment in sensor networks. In Proceedings of IFIP
Networking, Atlanta, GA, May 2007.

[24] M. Youssef and A. Agrawala. The Horus WLAN location determination
system. In Proc. of the ACM International Conf on Mobile Systems,
Applications, and Services (ACM MobiSys), June 2005.

[25] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity
in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1:89-
124, Jan. 2005.

[26] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic. Impact of
radio irregularity on wireless sensor networks. In Proc. of the ACM
International Conf on Mobile Systems, Applications, and Services (ACM
MobiSys), June 2004.

60

1 0 0-0-0 04-0*40

1.

0.75 .

0.1e

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 13, 2008 at 16:19 from IEEE Xplore. Restrictions apply.

