Poster: Using Fuzzy Pl Controller to Provide QoS on Web Servers

Ka Ho Chan, Xiaowen Chu
Department of Computer Science
Hong Kong Baptist University, Kowloon, Hong Kong
{chxw, khchan}@comp.hkbu.edu.hk

With the drastically increasing usage of Web services, it
becomes more and more challenging to design Web servers. It
is usually not economically feasible to design Web servers for
estimated peak load, because the limited Web server resources
can never catch up with the increasing user populations.
However, it is possible to provide a better service to premium
users, even when the Web server is overloaded. Therefore,
providing QoS on Web servers becomes a trend in Web server
design. Control theory is a powerful tool in designing QoS
schemes by adaptively allocating resources to different classes
of requests based on sampled feedback.

Proportional delay differentiation is a popular model for
differentiating different classes of services. In [1], a classical
P1 controller is proposed to guarantee the delay ratios between
different classes. The Web server is approximately modeled
by a second order system. The system parameters are then
determined by system identification technique. However, this
classical PI controller cannot get satisfactory results on some
of the performance metrics, such as settling time and
oscillation.

Fuzzy control theory has also been used in the literature [2].
It shows some advantages over classical Pl controller. But the
main drawback of fuzzy controller is the large amount of
parameters to be tuned. It is especially difficult to make initial
approximate adjustment, as suggested in [3]. Furthermore,
parameters tuning relies on the quality of the expert
knowledge.

In this paper, we propose a new control mechanism called
fuzzy PI controller to provide proportional delay guarantee. It
combines the advantages of fuzzy controller and classical Pl
controller. In presence of bursty traffic, it can shorten the
settling time and decrease oscillation as compared with the
pure Pl controller. On the other hand, as compared with fuzzy
controller, fuzzy PI controller has the nice property that it is
very easy to set the controller parameters. Furthermore, it has
no risk to yield a nonzero steady state error.

Our study is based on the Apache Web server, which is
currently the most popular one [4]. Apache Web server
maintains a pool of workers processes’, each of which serves a
single HTTP connection. The total number of workers is
limited by the parameter MaxClients. When an HTTP request
arrives, it enters the TCP Accept Queue and waits for a free

' In Apache 2.0 (or higher), a worker can also be configured as a thread.

worker. For HTTP/1.0, a worker process only sends a single
object to the client, and then becomes free. But since
HTTP/1.1, a worker process usually handles the transmission
of lots of objects during a single TCP session. Hence a worker
process will be hold by a single client for a long time. During
heavy traffic, all worker processes may be busy and new
requests have to wait until a worker process becomes free. Let
the connection delay denote the time interval between the
arrival of a connection request and the time that the connection
is accepted. Since we are only interested in the connection
delay, we simply use the term “delay” in the remaining part of
the paper. The focus of this paper is not to shorten the delay,
but to guarantee a shorter delay for clients of premium class.
This is done by adaptively adjusting the number of processes
allocated to different classes of clients.

For simplicity, we only consider two classes of service: the
premium class (class 0) and the basic class (class 1). We want
to guarantee that the delay ratio between basic class and
premium class is maintained at a predefined constant level.
This constant value is called “set point”. However, if the
traffic load changes in a sudden, it is not an easy task to adjust
the number of processes accordingly to maintain the delay
ratio at the set point. One difficulty is that, normally we cannot
preempt existing HTTP sessions to free a busy worker process.

The delay ratio is controlled by adjusting the number of
workers allocated to the two classes adaptively based on the
sampled feedback information. The general system
architecture is shown in Figure 1. The connection scheduler
classifies incoming requests into different classes. The
scheduler maintains a FIFO connection queue and a process
counter. The process counter denotes the number of processes

allocated to that class. E.g., p, is the number of processes

allocated to premium class, and p, is the number of processes

allocated to basic class. A new request is allocated to a process
only if the current number of consumed processes for that
request’s class is less that that class’s process counter. The
delay ratio monitor carries out the measurements of the

proportional delay ratio, denoted by C /C , where C and C,
denotes the measured connection delay for class 1 and class 0
respectively.

The detailed structure of the fuzzy PI controller is shown in
Figure 2. Its main task is to calculate suitable values of p,

mailto:chxw@Comp.HKBU.Edu.HK

and p, for the next control loop, based on the measured

history record of delay ratios. DR is the delay ratio error, i.e.,
the difference between the measured delay ratio and the

desired delay ratio (i.e., the set point). The two parameters, K,

and K, can be obtained by system identification technique

and root locus method. Due to limited space, we omit the
detailed formulae and fuzzy sets used to calculate the values of

P, and P, . For details, please refer to [5].

Classifier
N

Connection Scheduler

Process Apache Web

Server

—Requests—+|

————

Fuzzy PI
Controller

kK [[DR

Fig. 1. The System Architecture

Delay Ratio
Monitor

Inference

Fig. 2 The structure of the fuzzy PI controller

Defuzzification

AUVE Um‘ Po. Py Web Server

Cy/Co

Fuzzification

The overhead of the fuzzy PI controller is very small,
because it only contains simple multiplications and additions.
Furthermore, the controller only needs to adjust the process
assignment once for a sampling period (normally at the order
of tens of seconds).

Our experiment platform includes a high-end PC served as
Web server and another four PCs served as clients, which are
connected by a 1-Gbps Ethernet switch. The client PCs
generate Web traffic using the Surge workload generator [6].
We implemented the fuzzy Pl controller by modifying the
source code of Apache 1.3.9 on Linux platform. The sampling
period was set to 30 seconds. At the end of every sampling
period, the controller adjusts the number of workers assigned
to each class.

At the Web server, the total number of processes was
configured to 128. The number of processes allocated to each
class was set to 64 at the starting time. The set point is 3. At
the clients, in the first 1000 seconds, there are 300 premium
class users and 200 basic class users. At 1000" second, the
number of users for both classes is increased by 200.

The experimental results are shown in Figure 3. The delay
ratios of both controllers deviate from the set point seriously
after load changing at 1000" second. After a shorter period of
time, the fuzzy PI controller reacted and re-converged to the

10

set point at around 1700" second. However, it takes a longer
time for the Pl controller to converge to the set point (at
around 2200" second). The PI controller also shows a more
violent oscillation. A series of experiments with different
loading have been done which shown similar results as
Figure3.

Closed-loop Server: Delay Ratio

Fuzzy Pl Controller
— - — - Classic Pl Controller
Set Point

p A o
| P p, OAAALAANAAAA

Delay Ratio

1600 1800 2000 2200 2400 2600

Time/Sec

1 I ' '
800 1000 1200 1400

Fig. 3 The delay ratio of the Pl and the fuzzy PI controller

Our current work is to design the fuzzy PI controller for a
Web server cluster, where a group of back-end servers are
connected together to offer high request processing capacity.
Load balancing and locality-aware are the two properties of
Web server clusters, which make the controller design more
challenging than the case of a single node server.

ACKNOWLEDGEMENT

This research was partially supported by Research Grant
Council under grant RGC HKBU 210605, and grant FRG/05-
06/1134 from Hong Kong Baptist University, Hong Kong.

REFERENCES

[1] C. Lu, Y. Lu, T. F. Abdelzaher, A. Stankovic, and S. H.
Son, “Feedback Control Architecture and Design
Methodology for Service Delay Guarantees in Web
Servers,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 9, pp. 1014-1027, 2006

Y. Wei, C. Lin, X.-W. Chu, and T. Voigt, “Fuzzy Control
for Guaranteeing Absolute Delays in Web Servers,”
International Journal of High Performance Computing
and Networking, to appear.

(2]

[3] P. Pivonka, “Comparative Analysis of Fuzzy PI/PD/PID
Controller Based on Classical PID Controller Approach,”
In Proc. of the 2002 IEEE World Congress on

Computational Intelligence, pp. 541-546, 2002.
[4]
(5]

Apache Software Foundation. http://www.apache.org/.

K.H. Chan and X.-W. Chu, “Design of a Fuzzy PI
Controller to Provide Proportional Delay Guarantee for
Web Servers,” Technical Report, Department of
Computer Science, Hong Kong Baptist University, 2006.
http://www.comp.hkbu.edu.hk/tech-report/tr06001f.pdf

[6] P. Barford and M. Crovella, “Generating Representative
Web Workloads for Network and Server Performance
Evaluation,” In Proc. of the ACM SIGMETRICS, pp. 151-

160, November 1998.

http://citeseer.nj.nec.com/barford98generating.html
http://citeseer.nj.nec.com/barford98generating.html
http://citeseer.nj.nec.com/barford98generating.html

	p2.pdf
	Introduction
	Mobility Notification Protocol
	Conclusion and Future Work
	References

	p2.pdf
	Introduction
	Mobility Notification Protocol
	Conclusion and Future Work
	References

