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Abstract— Peer-to-peer (P2P) systems have been widely used
for exchange of voluminous information and resources among
thousands or even millions of users. Since shared data are
normally identified by multiple attributes, a fundamental issue in
P2P systems is to efficiently support complex queries on multi-
dimensional data. Prior works suffer from some fundamental
limitations, such as being constrained to support certain types of
queries, excessive maintenance overheads, and etc. In this study,
we propose a framework, calleddistributed peer tree (DPTree),
which efficiently supports various types of queries on multi-
dimensional data in P2P systems based on balanced tree indexes.
DPTree achieves the efficiency through the following designs: 1)
distributing the tree structure among peers in a way preserving
the nice properties of balanced tree structures yet avoiding single
points of failure and performance bottlenecks; 2) organizing
peers into an overlay structure that enables efficient navigation
yet is easy to maintain; 3) an efficient navigation algorithm; 4)
an innovative wavelet-based load balancing mechanism. Through
extensive performance evaluation, we verify the superiority of
DPTree over existing works.

I. I NTRODUCTION

Peer-to-peer (P2P) systems have been widely used for
exchange of voluminous information and resources among
thousands or even millions of users. Data objects shared in
P2P systems, such as images, and documents, are normally
identified by multiple attributes, and can be viewed as points in
a multi-dimensional space. Users often issue complex queries
in addition to point queries (exact match queries) to retrieve
data objects from P2P systems. For instance, a user might
issue following queries: ”return all documents with similarity
to x within r” (range query), or ”return thek documents
most similar tox” (K nearest neighbor query). Thus, one of
the fundamental issues faced by P2P systems is to efficiently
support complex queries (in addition to point query) on multi-
dimensional data objects. Two most common types of complex
queries are range query and K nearest neighbor (KNN) query.
Given a reference data objectq and a radiusr, a range query
returns the data objects whose difference fromq is less than
r. Given a reference data objectq and an integerK, KNN
query returns theK data objects most similar toq.

Although some techniques have been proposed to address
query processing in P2P systems, they have some fundamental
limitations. Distributed hash tables (DHTs), e.g., CAN [15]
and Chord [16], can only support point queries based on
identifiers. Other works propose techniques based on locality-
preserving hashing (e.g., [2]), multiple index structures(e.g.,

[3]), or data space partitioning (e.g., [4], [19]). These works
suffer from one or more of the following limitations: being
constrained to support certain types of queries, excessivemain-
tenance overheads, performance degradation under skewed
data distribution, and ignorance of nonuniform accesses to
different data objects.

In this study, we propose an indexing framework, called
distributed peer tree (DPTree), which efficiently supports
various types of queries on multi-dimensional data in P2P
systems at reasonable maintenance overheads. In addition,
DPTree automatically adapts to data distribution and access
pattern. DPTree is inspired by balanced tree indexes (R-tree [6]
and a series of variants), which have been intensively studied
and become well-accepted multi-dimensional index structures
in database community over the years. They possess some
nice features including the ability to efficiently support arich
set of queries and adaptivity to data distribution. However,
it is challenging to support balanced tree indexes in P2P
systems. Simply mapping each tree node to a peer would
result in performance bottlenecks and single points of failure
at the peers taking charge of the tree nodes at higher level.
In addition, coupling a tree node with a peer (and coupling
the tree data structure with the overlay structure) would
make the maintenance complex and costly. DPTree overcomes
this challenge by decoupling a tree node from a peer (and
decoupling the tree data structure from the overlay structure)
and assigning (replicating) tree nodes to peers in accordance
with their access frequencies.

While the above basic idea of DPTree is straightforward,
the following issues need to be addressed carefully. 1)Tree
distribution: how tree nodes are assigned (replicated) among
peers in accordance with their access frequencies. This is
crucial to the search performance and maintenance overheads.
2) Overlay structure: how peers form into an overlay that
facilitates efficient navigation on the tree yet is easy to
maintain. 3)Navigation: how a query request is propagated
to the destination. With each peer only having a partial view
of the tree structure, navigation in DPTree is nontrivial. 4)
Access load balancing: how the access load is fairly distributed
among peers. Majority of existing works attempt to achieve
fair distribution of storage load in the system through random
hashing. However, in order to efficiently support complex
queries, data objects in DPTree are organized in accordance
with their attribute values rather than randomly hashed values.
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In addition, accesses to different data objects are not uniformly
distributed, and fair distribution of storage load does notimply
fair distribution of access load. Therefore, we need to design
an explicit access load balancing mechanism in DPTree.

To address these issues, we propose a suite of efficient solu-
tions, which constitute the following four major contributions
of this paper. 1) We proposetree branch oriented distribution,
which distributes (and replicates)tree branches, i.e., the tree
nodes along the path from the root to leaf nodes, as atomic
units to different peers. This scheme correlates the numberof
replicas for a tree node to its access frequency, and thus it does
not incur single points of failure and performance bottlenecks.
2) We propose atree-aware overlay, which maps peers to an
ID space in accordance with their assigned tree nodes, and then
organizes peers into an overlay based on the design principle
of skip graph [1] in the ID space. This overlay structure
enables efficient tree navigation yet is easy to maintain. 3)We
proposeaggressive navigationalgorithm, through which peers
aggressively forward messages to the destinations inlog(N)
steps on DPTree with high probability. 4) We proposewavelet-
based load balancingmechanism, which leverages wavelet to
monitor the load distribution in the system and adjust the load
among peers in a light-weighted yet effective fashion.

As a proof of concept, we show how different types of
queries, i.e., point query, range query and KNN query, can be
easily and efficiently supported in DPTree. Through extensive
performance evaluation, we demonstrate the superiority of
DPTree over existing works on various aspects.

The rest of this paper is organized as follows. We provide
the background and system model in next section. The design
details of DPTree are given in Section III, and the algorithms
to process different queries are described in Section IV.
The performance evaluation is presented in Section V. We
review the related studies in Section VI. Lastly, we draw the
conclusion and outline future research in Section VII.

II. PRELIMINARIES

A. Background

We briefly introduce balanced tree indexes, skip graph, and
wavelet, which are necessary to understand DPTree.

1) Balanced Tree Index:Balanced tree indexes are hier-
archical structures that recursively decompose a set of data
objects intof (called fanout) subgroups (tree nodes). The
decomposition stops when the number of data objects in a
subgroup falls below a threshold valuec (called leaf node
capacity). The top level (coarsest) subgroup is the root node
and the finest subgroups are the leaf nodes (other subgroups
are callednon-leaf nodes). A leaf node stores thecoverage
(enclosing region) of its corresponding subgroup and the
storage addresses of the data objects in the subgroup. A
non-leaf node stores the coverage of itself and its immediate
children.

We use R-tree [6], a well-known balanced tree index, as an
illustrative example. The coverage of a tree node in the R-
tree is represented by the smallest rectangle enclosing alldata
objects in the subgroup, calledminimum bounding rectangle
(MBR). Figure 1 shows an example. The left side depicts
the MBRs and right side depicts the tree structure. Other

balanced tree indexes have similar structures with different
representation for the coverage of tree nodes.
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Fig. 1. An illustrative example of R-tree.

To process a query in these index structures, the coverage
of a tree node is examined against the query starting from the
root node. If the coverage of a tree node does not enclose the
query, the subtree rooted at this tree node does not need to
be examined, i.e, the subtree can bepruned. Otherwise, the
children’s coverage is examined, and the query is continuedat
the child (or children) whose coverage encloses the query. The
process continues till every part of the tree is either pruned or
examined.

Balanced tree indexes have the following nice features.
1) Different from hashing techniques, they preserve locality
among data objects, which is essential for efficient processing
of complex queries. 2) They are fully dynamic and auto-
matically adapt to data distribution. 3) They do not need to
indexdead space(the data space that is not populated by data
objects), which is required in other overlays (e.g., CAN). 4)
Mature algorithms for various types of queries based on these
index structures have emerged over the years.

2) Skip Graph:Different from other overlays that establish
overlay links based on the distance in an ID space, skip graph
(or skipnet) establishes overlay links based onpeer distance
(the number of peers between two peers) [1], [7]. Therefore,
skip graph is insensitive to the distribution of peers in theID
space. In skip graph, peers form into a doubly-linked ring. In
addition, a peer maintains(logN -1) skip pointers (neighbors),
each of which skips over2i peers with high probability (1 ≤
i ≤ logN -1). Conceptually, skip graph is a hierarchical ring
with logN levels. The level-0 ring consists of all peers. It
is split into twochild rings (the ring before splitting is called
parent ringaccordingly), which are then recursively split until
the number of peers in the ring is not greater than 2. A peer
joins one ring at each level.

1
6

1

21

level 3

level 2

level 1

level 0

5 4

9

16

64

163 7 6
15

8

9

13

15

11 14
12

7
9

1113

15

345

87

10
111213

14

15

8

10
12

14

16
2

2

53

139 11 10 14 12

1 5 73 2 6
10

4 816

Fig. 2. An illustrative example of skip graph.

We first explain how to form a ”perfect” skip graph, where
a peer’s neighbor at level-i of the overlay is at exactly2i peer
distance away. Starting from level-0, the peers in a parent ring
are alternatively assigned to one of the two child rings. Figure
2 illustrates an example of a four-level skip graph formed by
16 peers. Peer 1, 3, 5, 7, 9, 11, 13, and 15 form one child ring
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at level-1 and the rest of the peers form the other child ring
at level-1. Each peer has four sets of neighbors with one set
at each level.

The above overlay construction is too rigid to accommodate
dynamic peer join/leave/failure. Therefore, some randomness
is introduced to make the overlay flexible by allowing a
peer to randomly join one of the two child rings. With high
probability, a peer’s neighbor at level-i is at 2i peer distance.

Routing is performed level-by-level starting from the top
level. At a specific level, the routing message is always
forwarded to the neighbor that is closest to the destination
without overshooting it. If no such neighbor can be found,
routing descends one level and the above process repeats. Itis
proven that routing can be resolved inlogN steps with high
probability in skip graph [1].

3) Wavelet: Wavelet is a tool used extensively in signal
processing (for details, please see [17]). It provides views of
data at different resolutions, called aslevel of decomposition.
In the following, we introduce the basic concept of Harr
Wavelet, which is simple and fast to compute. Harr Wavelet
consists ofaverage coefficient(or average) and detail coeffi-
cients(or differences) of a signal. The average coefficients and
detail coefficients at a level of decomposition are obtained
by pairwise averaging and differing of the averages on the
previous level of decomposition.

We use a simple sequence consisting of{2, 4, 3, 3, 7, 13,
15, 1} to illustrate how Harr Wavelet is formed. The averages
and differences at level-1 decomposition are obtained as{3,
3, 10, 8} and{2, 0, 6, -14}, respectively. We then repeat this
process on the averages ({3, 3, 10, 8}) to get the averages and
differences at level-2 decomposition as{3, 9} and {0, -2},
respectively. The level-3 decomposition is obtained similarly
as {6} and {6}. The wavelet transformis defined as the
average coefficient at the top level of decomposition, followed
by the detail coefficients at increasing resolution (decreasing
levels of decomposition). Thus the wavelet transform for the
original 8-value signal is{6, 6, 0, -2, 2, 0, 6, -14}. Each of
the 8 individual coefficients is calledwavelet coefficient. In the
remaining discussion, we refer wavelet transform as wavelet.
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Fig. 3. An illustrative example of wavelet error tree.

Denoting thekth average coefficient and detail coefficient
at level-j decomposition assj,k and dj,k, respectively, the
wavelet can be represented by a binary tree structure, called as
error tree in the literature. In the error tree, the average at the
top level of decomposition is the root of the tree. The detail
coefficient at the top level of decomposition is the only child
of the root. Each of the node representing a detail coefficient
(dj,k) has two children representing the detail coefficients at
the next lower level of decomposition (dj−1,2k anddj−1,2k+1).
Figure 3 illustrates the error tree for the above 8-value signal.

For illustration, we put the original values as the leaf nodes of
the tree (depicted by dotted line). In addition, we depict the
average coefficients for the levels other than the top level as
lightly shaded numbers (they are not included in the wavelet
transform/error tree).

The original signal can be reconstructed exactly from the
wavelet coefficients by taking the reverse steps of decomposi-
tion. One desirable feature of wavelet transform is that many
detail coefficients turn out to be very small and setting them
to 0 introduces only small errors in the signal reconstruction.
Therefore, the original signal can be approximated by a small
number of the most significant wavelet coefficients.

B. System Model

Without loss of generality, we consider balanced binary tree
(fanoutf = 2), i.e., a binary tree where the height of the left
subtree and right subtree of any tree node differs by at most 1.
Note that our proposal is not limited to fanout of 2 though. The
P2P system consists of N peers with homogeneous resources1.
We call the peer owning a data object as this data object’s
owner peer, and the peer storing the index of a data object
as this data object’sindex peer. The index of a data object
is a tuple〈value vector, location〉 where the value vector is a
vector of values of the data object on different attributes,and
the location is the identifier (IP address) of the owner peer.

III. DPTREE
We first present the tree branch oriented distribution and the

high level features of DPTree in Section III-A. We then discuss
the overlay structure and navigation algorithm in Section III-
B. The access load balancing mechanism is presented in
Section III-C. Lastly, we explain how to maintain the overlay
structure and tree structure upon peer join/leave/failureand
data insertion/deletion in Section III-D.

A. Overview of DPTree

We explain the design rationale for tree branch oriented
distribution before presenting the details of this scheme.

First, as mentioned earlier, coupling each tree node with a
peer would incur performance bottlenecks and single pointsof
failure at the peers responsible for the higher levels of thetree.
Thus, it is better to decouple the concept of a tree node from
a peer. This not only avoids the aforementioned problems, but
also renders the system the flexility to develop/optimize indi-
vidual mechanisms for tree maintenance, overlay maintenance,
and load balancing according to the patterns of data update,
peer update and load distribution, respectively.

Second, we observe that access on a tree normally proceeds
from the root down to a leaf node of interest by traversing
all non-leaf nodes along the path. This observation implies
that the tree nodes on a tree branch (consisting of the tree
nodes along the path from the root to a leaf node) are accessed
together. Thus, it is beneficial to distribute the tree nodeson
a tree branch to the same (or same set of) peer(s).

Based on these observations, we propose tree branch
oriented distribution, which distributes (and replicates) tree
branches as atomic units to different peers. Each peer manages

1In the case when peers have heterogeneous resources, we can use proper
weighting functions as suggested in [14].
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one or more tree branches (leading to one or more leaf nodes),
which form thelocal treeof this peer. A peer stores the index
of the data objects enclosed in the assigned leaf nodes. Thus,
this peer is the index peer of these data objects. In addition, for
each non-leaf node in the local tree, a peer stores the coverage
and height of its two immediate child nodes, used for tree
navigation and tree balance invariance checking, respectively.
Note that the two immediate children of a non-leaf node in the
local tree may or may not be present in the local tree, called
local child nodeand remote child node, respectively.

Figure 4 illustrates an example for DPTree. The leaf nodes
are grouped into 16 partitions (depicted by the grey rect-
angles), which are allocated to 16 peers. For the clarity of
presentation, we number the tree nodes as Node 1 to Node
53 and the partitions as P1 to P16. Each peer manages the
assigned leaf nodes as well as the non-leaf nodes on the tree
branches leading to the assigned leaf nodes. For readability,
we only show the local trees of Peer 1, 11 and 16 depicted
by the dotted polygons in the figure. For instance, the local
tree of peer 16 consists of the assigned leaf nodes 19-22 and
the non-leaf nodes on the tree branches leading to these leaf
nodes, i.e., Nodes 37–38, 46, 50, 52, 53. Node 45, 49 and 51
are the remote child nodes of Node 50, 52, and 53 in the local
tree of Peer 16, respectively.
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Fig. 4. An illustrative example of DPTree.

DPTree essentially is a fully distributed multi-dimensional
balanced tree index. It inherits the nice properties of central-
ized balanced tree structures, i.e., locality preserving,adaptiv-
ity to dynamic data distribution, avoiding indexing dead space,
and ability to support various types of queries. In addition,
DPTree has its own unique feature, i.e., fair load distribution
both vertically and horizontally. Vertically, the tree nodes at
the higher levels of the tree have more replicas compared to
the tree nodes at the lower levels of the tree. This design avoids
the single points of failure and performance bottlenecks, which
would normally be associated with the higher levels of a tree
structure. Horizontally, the density of peers managing different
portion of the tree (the number of tree branches assigned to
different peers) reflects the access frequency of differentdata
objects (through load balancing to be discussed later), i.e.,
more peers manage the frequently accessed portion of the tree.

B. Overlay Structure and Navigation Algorithm

1) Tree-Aware Overlay:One possible solution to construct
the overlay is to couple the tree data structure with the overlay
structure. That is, each peer maintains a pointer pointing to the

other side of the subtree for each level of its local tree (i.e., the
remote child node). However different peers might maintain
different number of tree branches, resulting in different peers
having different number of routing pointers. This would lead
to uneven distribution of routing load among peers.

We propose to organize peers into atree-aware overlay,
which is decoupled from but aware of the tree data structure.
In tree-aware overlay, peers first obtain a total order through
tree-aware peer naming schemeand then form an overlay
over the ordered space based on the design principle of skip
graph (Section II-A.2). Tree-aware overlay enables efficient
navigation on the tree yet is easy to maintain.

Tree-Aware Peer Naming.Tree-aware peer naming scheme
assigns each peer a unique identifier, i.e.,peerID. These
peerIDs provide a total order of peers, which reflects the
locality among assigned tree nodes. The naming scheme works
as follows. Each edge in the tree is labelled as0 or 1. A
tree node obtains atreenodeID, which is the concatenation
of the labels along the edges on the path from the root to
this tree node. The treenodeID of a leaf node is calledleafID
specifically. While a peer might manage a couple of tree
branches (and leaf nodes), it obtains itspeerIDas the smallest
leafID among all the leafIDs of the leaf nodes that it manages.
The lexicographic order among peerIDs defines the total order
of the corresponding peers.

Figure 4 illustrates the naming scheme. The left edge and
right edge of each node are labelled with 0 and 1, respectively.
The peerIDs are depicted at the bottom of the figure2. For
instance, Peer 11 manages two leaf nodes 29-30, which have
leafID as 0110 and 0111, respectively. Thus, Peer 11 obtains
its peerID as 0110. The left-to-right order depicted in the figure
represents the total order of the 16 peers.

Skip Graph Based Overlay.Above naming scheme maps
peers to an ID space. The distribution of peers in the ID
space might not be uniform as a result of load balancing.
Therefore, we need to construct an overlay that is insensitive
to the skewed distribution of peers in the ID space. We observe
that skip graph satisfies this requirement. Thus, we organize
peers into a skip graph in the ID space. In addition, a peer
periodically exchanges heartbeat messages with its neighbors
to maintain the consistency of the overlay structure (to be
detailed in Section III-D).

2) Aggressive Navigation:Navigation addresses how to
navigate to the index peer managing the index of a requested
data object3. Since each peer has only a partial view of the
tree structure, navigation in DPTree is nontrivial. We firstneed
to determine which part of the overlay (tree) might cover
the requested data object or destination, i.e.,search space
resolution, and then get to that part of the overlay, i.e.,routing.

Search Space Resolution.Since tree-aware overlay is
constructed over the ID space, search space resolution is
to estimate the leafID(s) of the leaf node(s) covering the
destination, denoted asdestID. This is achieved by examining
a peer’s local tree as follows. A peer examines the tree node

2treenodeID, leafID or peerID bear no relationship with the numbers used
to label each tree node (1–53) and partition (P1–P16). The latter is for the
purpose of illustration only.

3Once the index peer is found, the owner peer can be obtained easily from
the index peer. Thus we focus on navigating to the index peer in this paper.
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in its local tree with the treenodeID as the currently obtained
destID (initially set to wildcard∗). If there is no such tree
node in its local tree, this peer can not refine the destID further.
Otherwise, the child node that covers the destination is entered
and examined further. This process continues till either a leaf
node or a remote child node of the local tree is reached. In
the former case, the current peer is the destination and the
navigation terminates. In the latter case, destID is refinedas
A∗, which indicatesA, the treenodeID of this remote child
node, is a prefix of the destID.

Routing. The destID (with wildcard∗) obtained above
through search space resolution actually represents a range
of IDs in the ID space. Therefore, the routing algorithm
for skip graph as mentioned in Section II-A.2 can not be
simply applied here. Instead, we first need to decide which
one of the IDs in the range specified by the destID should
be used for routing. After careful examination, we observe
that the ID furthest away from current peer’s peerID should
be used for routing. The rationale behind this aggressive
navigation algorithm is that even though we might overshoot
the destination by routing towards the furthest possible destID,
the furthest possible distance to the destination is halvedat
each step. With the initial furthest possible distance to the
destination asN , the navigation to the destination is finished
in logN steps with high probability (Theorem 1). Algorithm
1 illustrates the pseudo-codes for the navigation.

Algorithm 1 Algorithm for Aggressive Navigation in DPTree.
Navigation at Peer i: i.navigate(q, destID, j) (destID indicates the
estimated leafID for q. j, initialized to the top level of theoverlay, indicates
at which level of the overlay the routing should proceed.)
1: if q ∈ i.index then
2: Stop.
3: else
4: Refine destID forq by invoking search space resolution.
5: x = the furthest ID from Peeri specified by destID.
6: m = level-j neighbor ofi that is closest tox without overshootingx.
7: if m= NULL then
8: j = j-1.
9: GOTO 6.

10: end if
11: Forwardnavigate(q, destID, j) to m.
12: end if

Theorem 1: Given N peers in DPTree, a peer can navigate
to any part of the overlay inO(logN) hops (steps) with high
probability.
Proof: We prove this theorem by induction. Given the peer
distance to the destination at the beginning of theith step as
xi ≤ N

2i−1 , we prove the peer distance is halved after this
routing step, i.e.,x′

i ≤
N
2i . Once this is proven, we can easily

derive afterlogN steps, the peer distance to the destination is
reduced to1. The message can then be trivially forwarded to
the destination with one additional step.

Assume the highest level of the overlay ish (h = logN with
high probability). Recall that each peer haslogN neighbors
with the level-j neighbor at peer distance (denoted asdj) as
2j with high probability (0 ≤ j ≤ logN -1).

We start from the base case withi = 1. It is obvious that
x1 ≤ N

21−1 = N .
Assume that we are at the beginning of theith step and

the peer distance to the destination isxi ≤ N
2i−1 . We have

two possible scenarios: 1)xi > N
2i ; 2) xi ≤ N

2i . For the

first scenario, one of the current peer’s neighbors at level-
(h-i) must be closer to the furthest possible destID without
overshooting it. Therefore, this neighbor is chosen to forward
the request. As a result, the peer distance to the destination
(x′

i) is then reduced toxi − dh−i = xi −
N
2i ≤ N

2i . For the
second scenario, the request may or may not be forwarded at
this routing step. If the request is forwarded,x′

i is reduced to
dh−i − xi (≤ N

2i ). Otherwise,x′

i equals toxi (≤ N
2i ). �

Let’s go back to Figure 4 to illustrate an example for
navigation in DPTree. Assume Peer 1 wants to navigate to leaf
node 13 (please refer to Figure 2 for the overlay structure).
Peer 1 invokes search space resolution and obtains the destID
as1∗. Since the peerID of Peer 1 is00000, the furthest possible
destID is111...111. Peer 1 examines its neighbors at the top
level and routes the message to Peer 9. When Peer 9 receives
the message, it invokes search space resolution and still obtains
the destID as1∗. Similarly, Peer 9 examines its neighbors at
level 3. Since the only neighbor at this level (Peer 1) is further
away from the destID, routing descends one level to level 2.
At this level, Peer 9 forwards the message to Peer 13, which
is closer to111...111 without overshooting it. When Peer 13
receives the message, it invokes search space resolution and
refines the destID as100∗. The furthest destID from Peer
13 is 1000...000. Peer 13 examines its neighbors at level-2
and does not forward the message at this level since neither
neighbor qualifies. Routing descends to level-1. Similarly,
neither neighbor at level-1 qualifies and routing descends one
more level to level-0, where the message is forwarded to the
destination Peer 12.

C. Wavelet-assisted Load balancing

In the following, we first describe an intuitive solution for
load balancing and point out the limitations, which motivate
wavelet-assisted load balancing. We refer access load as load
if the context is clear.

One solution for load balancing as suggested by majority
of existing works (e.g., [3], [5], [10], [14]) is to let an
overloaded peer choose the least loaded peer in the system
as thetarget peerto shed part of its load to. The target peer
merges its load to its neighbors, leaves its original place,and
rejoins the overlay as the neighbor of the overloaded peer
to take part of its load. We call this solution asleave-rejoin
mechanism. This mechanism has two drawbacks. First, the
peers in the neighborhood of the target peer might not be
lightly loaded. Merging the load from the target peer to its
neighbors might cause the neighbors become heavily loaded,
resulting in cascading load balancing operations. Second,the
leave-rejoin process causes changes on the overlay links, and
thus requires update on the overlay, which might be costly.
As suggested later, in some cases when the target peer and
the overloaded peer are nearby in the overlay, it might be a
better option to let the extra load ripple through the neighbors
to reach the target peer without affecting the overlay structure.

We observe that if a peer somehow has a global view of
the load distribution in the system, both weaknesses mentioned
above can be avoided. To obtain such a global view, we need to
summarize and disseminate the load distribution of the system
in a compact yet sufficiently accurate format. Inspired by
wavelet, a well-studied compression tool in signal procession,
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we propose wavelet-assisted load balancing, which leverages
wavelet to facilitateload monitoringandload adjustingin P2P
systems in a light-weighted yet effective fashion.

To perform load monitoring, peers exchange load infor-
mation with their neighbors at each level of the overlay
through heartbeat messages and form the approximate wavelet
of the load distribution in the system, calledloadwavelet.
Load adjusting is performed in the following three steps. 1)
Overloading monitoring: guided by loadwavelet, peers can
easily determine whether they are overloaded. 2) Target peer
selection: an overloaded peer leverages the multi-resolution
view of loadwavelet to find a target peer, i.e., the peer that
is lightly loaded and whose neighborhood is lightly loaded
as well. 3) Load shedding: peers adjust their load4 using
two mechanisms, i.e.,rippled load sheddingand direct load
shedding, depending on which one is more cost-effective by
taking into consideration the cost incurred by index movement
as well as overlay maintenance.

Compared to the aforementioned existing works, our load
balancing mechanism has the following three advantages. 1)
It uses a light-weighted mechanism to maintain a sufficiently
accurate summary of the load distribution in the system.
2) When choosing a target peer, it takes into consideration
the load on a peer as well as the load on the peers in its
neighborhood. In contrast, prior works only consider the load
on a peer itself. 3) It takes into account the cost incurred by
both index movement and overlay maintenance, and switches
between two different load shedding mechanisms depending
on the cost. In contrast, prior works only consider the cost of
index movement and conduct load shedding using a variant of
direct load shedding.

We now explain the details of load monitoring and load
shedding.

1) Load Monitoring:We first assume that we have a perfect
skip graph (where a peer’s neighbor at leveli is at exactly2i

peer distance) and unbounded communication resource to form
an exact (complete) loadwavelet. Later on, we discuss how to
relax these assumptions.

A peer first exchanges its current load with its level-0
neighbor clockwise on the overlay and forms the wavelet for
the ”signal” consisting of two values, i.e., its current load
and its neighbor’s current load. This peer then exchanges this
wavelet with its level-1 neighbor clockwise on the overlay
and forms the wavelet for the signal consisting of four values,
i.e., the load on this peer and the following three consecutive
peers. Following this process, through message exchange with
a level-i neighbor on the overlay, the wavelet covering2i+1

consecutive peers is obtained. This process continues tillthe
top level of the overlay is reached. At this point, we obtain
the loadwavelet of all the peers in the system.

We use Figure 5 to illustrate an example of loadwavelet in
a system consisting of 16 peers (please refer to Figure 2 for
the overlay structure). For illustration, we represent peers on
each level of the overlay on a straight line. The numbers in
the parentheses are the peers whose load values are included
in the loadwavelet formed at the previous level of the overlay.

4We set the leaf node capacityc to be the payload size of a packet. The
rationale is to let a leaf node also serve as the finest unit of load transferred
between two peers during load balancing.

After message exchange with the neighbor at the top level
(level-3), each peer obtains the loadwavelet of the system.
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Fig. 5. An illustrative example of loadwavelet.

Now we discuss how to relax the assumption of unbounded
communication resource. The length of the complete wavelet
formed at higher levels of the overlay is large (e.g., the length
of the loadwavelet formed at level-i of the overlay is2i+1), and
exchanging such complete wavelets is costly. To reduce this
cost, we select them most significant wavelet coefficients to
approximate the loadwavelet, wherem is a tunable parameter
balancing the precision and the construction cost of the wavelet
(which will be evaluated in details later).

Up to now, we assume that a peer’s level-i neighbor is at
exactly 2i peer distance. In reality, a peer’s level-i neighbor
is at 2i peer distance with high probability instead of exactly.
Therefore, during the above wavelet formation, the load values
for certain peers might be counted more than once or not be
counted (when a level-i neighbor is at peer distance less than
2i or larger than2i, respectively). Since the percentage of
redundant load values or missing load values is expected to
be very small, this doesn’t affect the accuracy of loadwavelet
significantly.

2) Load Adjusting: As mentioned earlier, load adjusting
consists of three tasks, i.e., overloading monitoring, target peer
selection, and load shedding.

Overloading Monitoring. A peer obtains the average load
of the system easily from the loadwavelet, i.e, the first wavelet
coefficient. If the current peer’s load is more thanδ times of
the average load, it is marked as an overloaded peer.δ is a
tunable system parameter determining the tradeoff betweenthe
cost of load balancing and how well the system is balanced. A
smaller value creates a more balanced system at higher cost.

Target Peer Selection.In addition to providing a compact
summary of the load distribution, loadwavelet also provides
multi-resolution views of the load distribution in the system.
We exploit this multi-resolution feature to choose the lightly-
loaded peer residing in a lightly-loaded neighborhood as the
target peer. For presentation clarity, we use the wavelet error
tree (described in Section II-A.3) to explain how target peer
selection is performed. A peer examines the error tree starting
from the root node. If the detail coefficient is greater than
0, the average load on the left half of the overlay is smaller.
Thus, we drill down one level on the error tree and enter the
left child. On the other hand, if the detail coefficient is smaller
than 0, the right child is entered. In the case when the detail
coefficient is 0, we examine both children’s detail coefficients
and enter the child node with larger absolute value (implying
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one quarter of the overlay has the lightest load among the
four quarters). This process continues till we reach the bottom
level of the error tree where the target peer is obtained. Using
Figure 3 as an example for the load distribution in a system
with 8 peers, target peer selection proceeds as follows. We
first examined3,0. Sinced3,0 is a positive value, we enter the
left child and examined2,0. d2,0 is 0, and its left child node
d1,0 has larger absolute value. Thus, we enter the left child
(d1,0) and subsequently choose the first peer (with load as2)
as the target peer.

Load Shedding. Once a target peer is chosen, the load
on the overloaded peer is adjusted through two different
mechanisms, rippled load shedding and direct load shedding,
depending on the cost incurred by both index movement and
overlay maintenance. For presentation brevity, we describe the
ideas of these two load shedding mechanisms. For the details
on estimating the cost of these two mechanisms, please see
[12].

In rippled load shedding, the load ripples through the neigh-
bors to reach the target peer. The target peer first merges its
load to its neighbors. Then the overloaded peer sheds half ofits
load to its immediate neighbor (by moving the corresponding
leaf nodes), which then sheds the same amount of load to the
neighbor’s neighbor. This process continues till the target peer
is reached. During rippled load shedding, although moving the
leaf nodes between neighbors causes changes on the peerIDs
of the peers involved, the order among peerIDs is not changed
and thus the overlay links are not changed. Therefore, the
advantage of rippled load shedding is that it incurs only index
movement cost but no overlay maintenance cost. Rippled load
shedding works well when the overloaded peer and target peer
are nearby in the ID space.

Direct load shedding is similar to the load shedding scheme
adopted in the leave-rejoin mechanism. It requires the target
peer merge its load with its neighbors, leave its original place,
and rejoin the overlay as a neighbor of the overloaded peer
to take over half of its load. In addition to incurring index
movement cost, the leave and rejoin of the target peer affects
the overlay links, incurring overlay maintenance cost.

D. Maintenance in DPTree

We adopt the soft state mechanism to maintain the con-
sistency of the overlay structure and tree data structure. The
basic idea of soft state mechanism is to associate a state with
a timer, and refreshes (or deletes) the state if a refreshment
message is (or is not) received before the associated timer
expires. Based on this idea, a peer associates a timer with each
of its neighbors and each of its indexed data objects. A peer
sends heartbeat messages to its neighbors periodically. Ifa peer
does not receive a heartbeat message from a neighbor before
the associated timer expires, it infers this neighbor leaves
or fails (and invokes overlay update to be detailed shortly).
Similarly, a peer republishes its data objects to the system
periodically. If the index peer of a data object does not receive
a refreshment message before the associated timer expires,it
infers this data object disappears from the system (and invokes
data deletion). This mechanism ensures the consistency of both
overlay structure and tree data structure in a simple yet light-
weighted fashion.

In the following, we provide the high level description on
the operations performed upon peer join/leave/failure anddata
insertion/deletion. For more details, please see [12].

1) Peer Join/Leave/Failure:A peer joins the overlay level-
by-level starting from level-0 by establishing two neighbors
at each level. This process incurs2logN messages in total. In
addition, the newly joined peer publishes the index of the data
brought with it to the system (to be detailed shortly).

Once a peer detects that one of its neighbors at level-i is not
alive (due to lack of heartbeat messages as described above),
it starts to re-establish its neighbors level-by-level starting
from level-i. This process incurs at most2logN messages in
total. In addition, the tree branches previously assigned to this
peer is re-distributed to other alive peers through the index
republishing process as described above.

2) Data Insertion/Deletion:Inserting (deleting) a data ob-
ject basically is to publish (remove) the index of this data
object. This involves two steps: locating the leaf node (and
corresponding peer) to insert (remove) the index through the
similar procedure as tree navigation, and inserting (deleting)
the index of the data object on the chosen leaf node (and
splitting or merging the leaf node when necessary). The
changes on the coverage and height of the tree nodes upon
data insertion/deletion are propagated to the peers managing
the tree nodes in the subtree rooted at the parent node of the
tree node performing the changes (since all these peers record
the coverage/height information of this node). We observe
that through the tree aware peer naming scheme (Section III-
B.1), all these peers are consecutively positioned in the ID
space. Therefore, this update incursn messages andlogn
propagation hops wheren is the number of affected peers.
In addition, with the increase of the tree levels, the changes
on the corresponding tree nodes become less frequent. This is
beneficial since the propagation of the coverage/height changes
on the tree nodes at the higher levels is more costly than that
at the lower levels. Note that all these changes on the tree
structure do not affect the overlay structure since the total order
among peers does not change. This confirms the advantage
of decoupling the tree structure from the overlay structureas
discussed in Section III-B.1.

IV. A PPLICATION OFDPTREE

In the following, we show how to support two most common
types of complex queries, i.e., range query and KNN query,
in DPTree (to support point query, we can directly apply the
navigation algorithm presented in Section III-B.2 with the
query as the destination).

A. Range Query

We extend the navigation algorithm given earlier (Section
III-B.2) to process range query. The difference of a range query
from a point query is that the destination is specified as a query
range instead of a query point. Therefore, during search space
resolution, all the tree nodes overlapping with the query range
need to be entered and examined. If multiple child nodes need
to be examined, multiple threads of processing are invoked to
examine these nodes in parallel.
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Fig. 6. Cost of load balancing.

B. K Nearest Neighbor Query

A KNN query is processed in two steps, obtaining a good
enough candidate set, and refining the candidate set through
range query. To obtain a good enough candidate set, the peer
managing the leaf node that covers the reference data objector
that is closest to the reference data object (in the case thatnone
of the leaf nodes covers the reference data object) is reached
through the navigation algorithm. This peer then obtains the
K data objects (either owned or indexed by this peer) that
are closest to the reference data objects as the candidate set.
It is possible that some data objects in other peers might
be closer to the reference data object than the data objects
in the candidate set are. In order to obtain these closer data
object, the second step is invoked as follows. The current peer
obtains a query range centered at the reference data object
with the distance to theKth element in the candidate set as
the radius. Then similar procedure as range query is employed.
As soon as a closer data object is obtained, the candidate set
and the query range are refined. This process continues until
the refined query range is completely examined.

V. PERFORMANCEEVALUATION

We now proceed to the evaluation of DPTree. We import
R-tree according to the proposed DPTree framework. We
evaluate DPTree from four aspects, i.e., routing, load bal-
ancing, query processing, and maintenance. For presentation
brevity, we summarize the results for routing and maintenance
and present the detailed results for load balancing and query
processing (please see [12] for more details). We verify that
routing to any part of the system is achieved withinlogN
steps in DPTree regardless of the distribution of peers in the ID
space. In addition, we verify the average maintenance overhead
incurred per peer join/leave/failure and data insertion/deletion
is low, confirming our discussion in Section III-D.

A. Load Balancing

To evaluate the performance of our proposed load balancing
mechanism, we measure the number of messages required to
make the systemδ-balanced, defined as a system with∀i ∈
{0, 1, 2, ..., N}, li ≤ δ · l̄ whereli is the load of Peer i and̄l is
the average load of the system. For comparison, we implement
the leave-rejoin mechanism (proposed in Mercury [3]) as
described in Section III-C. In the leave-rejoin mechanism,the
least loaded peer is chosen as the target peer and the load
shedding process is similar to direct load shedding.

We evaluate the number of messages incurred by load
balancing under different network sizes, different initial access
load distribution, and different sizes of (approximate) wavelet
(indicated bym as discussed in Section III-C.1). We use Zipf-
distribution controlled byload distribution skewnessto model
the initial access load distribution. The default setting for the
network size, load distribution skewness, and wavelet sizeis
1024, 1, andN , respectively. For presentation brevity, we
present the results withδ set to2 (the general trends observed
under different setting forδ are similar).

1) Effect of Network Size:Figure 6(a) shows the result
under different network sizes. The x-axis is on logarithmic
scale for readability. From this figure, we see the number
of messages incurred by load balancing increases almost
linearly with the network size, which is expected. In addition,
the number of messages incurred by wavelet-assisted load
balancing is smaller than that incurred by the leave-rejoin
mechanism, especially when the network size is large.

2) Effect of Initial Load Distribution: Figure 6(b) shows
the result under different initial load distribution (different
skewness values). The number of messages increases with
the skewness value. This is expected since more skewed load
distribution requires more load to be redistributed among
peers to make the systemδ-balanced. The increase rate of
the cost incurred by wavelet-assisted load balancing is much
smaller than that incurred by the leave-rejoin mechanism. This
demonstrate the superiority of wavelet-assisted load balancing
under more skewed load distribution.

3) Effect of Wavelet Size:Figure 6(c) shows the result
under different wavelet sizes, i.e., 10, 20, 51, 102, 204, 512,
corresponding to 1%, 2%, 5%, 10%, 20% and 50% of the size
of the original wavelet transform (1024). From this figure, we
see that when the wavelet size decreases, the number of mes-
sages increases. This is because more errors are introducedin
signal reconstruction by a more compact approximate wavelet,
which causes the selection of the target peers deviate from the
optimal ones, incurring some extra messages. However, even
when the size of the approximate wavelet is only 2% of the
original wavelet, the number of messages incurred by wavelet-
assisted load balancing is still smaller than that incurredby
the leave-rejoin mechanism (indicated by the horizontal line
in the figure).

This set of experiments demonstrates the superiority of
wavelet-assisted load balancing. In addition, a compact ap-
proximate wavelet can be formed as the by-product of heart-
beat messages exchange between neighbors at almost no ad-

19



 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1

av
er

ag
e 

nu
m

be
r 

of
 m

es
sa

ge
s

data distribution skewness

DPTree
CAN

 0

 10

 20

 30

 40

 50

 60

 70

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

av
er

ag
e 

nu
m

be
r 

of
 m

es
sa

ge
s

query range

DPTree-unifrom data
DPTree-skewed data

CAN-uniform data
CAN-skewed data

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

nu
m

be
r 

of
 m

es
sa

ge
s

K

DPTree-uniform data
DPTree-skewed data

CAN-uniform data
CAN-skewed data

(a) point query (b) range query (c) KNN query
Fig. 7. Query performance.

ditional cost. In contrast, the leave-rejoin mechanism requires
non-trivial maintenance to keep track of the load distribution
in the system (to be explained in Section VI).

B. Query Performance

We implement the algorithms to process three different
queries, i.e., point query, range query and KNN query, in
DPTree. For comparison, we modify CAN overlay (by placing
data objects in accordance with their attribute values instead of
randomly hashed values) and implement the query algorithms
(similar to that described in Section IV) on top of CAN. We
choose CAN overlay for comparison in this set of experiments
due to the following two reasons. First, majority of prior works
are based on CAN or some variants of CAN. Second, although
some proposals (e.g., [3]) might be superior to CAN in terms
of supporting one specific type of query, they can not support
all types of queries that we are considering here.

We evaluate the query performance under different data
sets, query workloads, and network sizes. Without loss of
generality, the dimensionality of data objects is set to2. The
data sets are generated as follows. A certain number of seed
points are first randomly generated in the 2-dimensional data
space. Then from each of these seed points, we generate some
random data points with distance to the seed point following
Zipf distribution controlled bydata distribution skewness. By
varying the skewness value, we obtain a spectrum of synthetic
data sets ranging from uniformly distributed data set to highly
skewed data set. The total number of data points is100·N .

The query workload is generated as follows. We randomly
select a point as the query point for point query or reference
data object for range query and KNN query. For range queries,
we vary the query radius from 0.01 to 0.1. For KNN queries,
we vary the value of K from 1 to 10. We inject 1000 random
queries into the system and the results presented below are the
average results over these queries. Since the general trends
observed under different network sizes are similar, we only
show the results under network size as 1024.

1) Point Query:Figure 7(a) shows the result of point query
with data distribution skewness varying from 0 to 1. The num-
ber of messages incurred by DPTree is always smaller than
that of CAN. This confirms the efficiency of the tree-aware
overlay and aggressive navigation algorithm, and the benefits
of avoiding indexing dead space in DPTree as discussed in
Section II-A.1. In addition, the number of messages incurred
by DPTree is insensitive to data distribution skewness. This
confirms the adaptivity of DPTree to data distribution. It seems
the number of messages incurred by CAN also does not change
significantly under different skewness values. However, this

comes with the price of uneven load distribution among peers
due to the naive data space partition scheme adopted in CAN.
In contrast, DPTree always achieves fair load distribution
through the initial load-aware data placement using branch-
oriented tree distribution and the subsequent wavelet-based
load balancing.

2) Range Query:Figure 7(b) shows the result of range
query with query range varying from 0.01 to 0.1. For readabil-
ity, we only present the result with data distribution skewness
set to 0 and 1, respectively. As expected, the number of
messages increases with the query range. In addition, the
number of messages incurred by DPTree is always smaller
than that incurred by CAN. This again confirms the efficiency
of our tree-aware overlay and navigation algorithm, and the
benefits of avoiding indexing dead space in DPTree.

3) KNN Query: Figure 7(c) shows the results of KNN
query with the K value varying from 1 to 10. Similarly,
we only present the result with data distribution skewness
set to 0 and 1, respectively. From this figure, we see that
the number of messages incurred by DPTree increases very
slowly with the K value under both uniform data set and
skewed data set, and the number of messages incurred by
DPTree is always smaller than that of CAN. Furthermore,
the number of messages incurred by DPTree under skewed
data set is only slightly larger than that under uniform data
set. In addition to validating the efficiency of our tree-aware
overlay and navigation algorithm, this further confirms DPTree
is adaptive to data distribution, which benefits KNN query
processing. In contrast, the number of messages incurred by
CAN under skewed data set increases rapidly with K values.
This shows lack of the ability to adapt to data distribution
seriously degrades the performance of CAN under skewed data
set.

VI. RELATED WORKS

A few recent works propose to organize peers into a
balanced tree structure to support complex queries in P2P
systems, e.g., BATON [8], and VBI [9]. BATON simply
assigns each tree node to a peer and then establishes a chord-
like routing structure on each level of the tree. It only works
for one-dimensional data. In addition, BATON creates skewed
traffic distribution. While the peers responsible for the lowest
level of the tree perform majority of the routing, the peers
responsible for the higher levels of the tree are hardly used.
VBI [9] extends BATON to support multi-dimensional data
objects. However, it follows the design principle of BATON
and also incurs skewed traffic distribution. Fat-Btree [18]is
a distributed one-dimensional balanced tree (Btree) designed
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for parallel database system. As opposed to DPTree, all these
works couple the tree data structure with the overlay, making
the maintenance and load balancing complicated and costly.

A few works (e.g., [4], [19]) address complex queries
on multi-dimensional data by proposing techniques based on
data space partitioning. They have the following limitations.
First, they do not adapt to the dynamic changes on data
distribution. Second, as opposed to DPTree, these techniques
have to index the whole data space including the dead space,
increasing the index maintenance overhead as well as query
cost. Although these works also construct tree structures,these
tree structures are static and can become unbalanced, affecting
the performance of these proposals in different aspects. SSW
[11] is designed to facilitate efficient P2P search in high-
dimensional space and addresses the research issues raisedby
high dimensionality in P2P systems.

Mercury [3] addresses multi-dimensional range query by
constructing multiple index structures with one for each at-
tribute. It incurs high index maintenance overheads, especially
when the number of attributes is large. In addition, since
different attributes are indexed separately, it is not clear how
Mercury can be extended to support queries that require the in-
terplay among different attributes, e.g., KNN query. Reference
[2] proposes a technique based on locality preserving hashing,
which mandates complex/costly index construction and only
provides approximate query answers. NRtree [13] imports R-
tree to a super-peer network, which is different from our focus
here.

Quite a few works investigate load balancing. The studies
that are most relevant to our work are [3], [5], [10], [14].
The central idea of these works is the leave-rejoin mechanism
as described in Section III-C. These works differ in the way
how a target peer is determined. [10], [14] rely on random
communication with multiple peers, which can not guarantee
that a chosen target is a lightly loaded peer and also incurs
extra cost by randomly probing multiple peers. Reference
[5] proposes to maintain a separate data structure recording
the load on each peer, which is expected to be a nontrivial
task given the large size and high dynamics of the system.
Reference [3] relies on extensive sampling to maintain an
approximate histogram of the load distribution in the system.

VII. C ONCLUSION

One of the fundamental challenges faced by peer-to-peer
(P2P) systems is to efficiently support complex queries on
multi-dimensional data objects. Although some works have
studied this issue, they suffer from some fundamental limi-
tations. We propose a framework, called distributed peer tree
(DPTree), to efficiently support various types of queries on
multi-dimensional data in P2P systems based on balanced tree
indexes. DPTree combines a number of innovative ideas to
achieve the efficiency:tree branch oriented distribution, tree-
aware overlay, aggressive navigation, and wavelet-assisted
load balancing. We demonstrate the superiority of DPTree
over existing works through extensive performance evaluation.

DPTree provides a sound foundation where various data
management tasks can be explored. We plan to exploit DPTree
to investigate other types of complex queries and various data
mining tasks in P2P systems.
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