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Abstract— Peer-to-peer (P2P) systems have been widely used3]), or data space partitioning (e.g., [4], [19]). Theserkgo
for exchange of voluminous information and resources among suffer from one or more of the following limitations: being
thousands or even millions of users. Since shared data are Constralned to Support Certaln types Of querleS, excem
normally identified by multiple attributes, a fundamental issue in tenance overheads, performance degradation under skewed

P2P systems is to efficiently support complex queries on multi- e - .
dimensional data. Prior works suffer from some fundamental data distribution, and ignorance of nonuniform accesses to

limitations, such as being constrained to support certain types of different data objects.

queries, excessive maintenance overheads, and etc. In this dyu In this study, we propose an indexing framework, called
we propose a framework, calleddistributed peer tree (DPTree), distributed peer tree (DPTreg)which efficiently supports
which efficiently supports various types of queries on multi- yarious types of queries on multi-dimensional data in P2P
dimensional data in P2P systems based on balanced tree indexesSystems at reasonable maintenance overheads. In addition,

DPTree achieves the efficiency through the following designs: 1) . A
distributing the tree structure among peers in a way preserving DPTree automatically adapts to data distribution and a&cces

the nice properties of balanced tree structures yet avoiding single Pattern. DPTree is inspired by balanced tree indexes @&{&je
points of failure and performance bottlenecks; 2) organizing and a series of variants), which have been intensively ethidi

peers into an overlay structure that enables efficient navigation and become well-accepted multi-dimensional index strestu
yet is easy to maintain; 3) an efficient navigation algorithm; 4) in database community over the years. They possess some
an innovative wavelet-based load balancing mechanism. Through njce features including the ability to efficiently supportieh
extensive performance evaluation, we verify the superiority of gat of queries and adaptivity to data distribution. Howgever
DPTree over existing works. it is challenging to support balanced tree indexes in P2P
|. INTRODUCTION systems. Simply mapping each tree node to a peer would
Peer-to-peer (P2P) systems have been widely used ¥8pult in performance bottlenecks and single points otifeil
exchange of voluminous information and resources amoffthe peers taking charge of the tree nodes at higher level.
thousands or even millions of users. Data objects shared!fihaddition, coupling a tree node with a peer (and coupling
P2P systems, such as images, and documents, are nom{Q%tree data structure with the overlay structure) would
identified by multiple attributes, and can be viewed as saimt Make the maintenance complex and costly. DPTree overcomes
a multi-dimensional space. Users often issue complex esiethis challenge by decoupling a tree node from a peer (and
in addition to point queries (exact match queries) to re¢rie decoupling the tree data structure from the overlay stragtu
data objects from P2P systems. For instance, a user mighfl assigning (replicating) tree nodes to peers in accoedan
issue following queries: "return all documents with simita ~ With their access frequencies.
to x within r” (range query), or "return th&k documents  While the above basic idea of DPTree is straightforward,
most similar tox” (K nearest neighbor query). Thus, one ofhe following issues need to be addressed carefullyTrép
the fundamental issues faced by P2P systems is to efficierdlgtributiont how tree nodes are assigned (replicated) among
support complex queries (in addition to point query) on multpeers in accordance with their access frequencies. This is
dimensional data objects. Two most common types of complesucial to the search performance and maintenance oveshead
gueries are range query and K nearest neighbor (KNN) que2y. Overlay structure how peers form into an overlay that
Given a reference data objegtand a radius-, a range query facilitates efficient navigation on the tree yet is easy to
returns the data objects whose difference fr@ns less than maintain. 3)Navigation how a query request is propagated
r. Given a reference data objegtand an integerk, KNN to the destination. With each peer only having a partial view
query returns thd{ data objects most similar t@ of the tree structure, navigation in DPTree is nontrivigl. 4
Although some techniques have been proposed to addraAssess load balancindiow the access load is fairly distributed
guery processing in P2P systems, they have some fundameatabng peers. Majority of existing works attempt to achieve
limitations. Distributed hash tables (DHTSs), e.g., CAN J[15fair distribution of storage load in the system through @nd
and Chord [16], can only support point queries based dashing. However, in order to efficiently support complex
identifiers. Other works propose techniques based on tgealiqueries, data objects in DPTree are organized in accordance
preserving hashing (e.g., [2]), multiple index structufesy., with their attribute values rather than randomly hashedesl
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In addition, accesses to different data objects are nobimlfy balanced tree indexes have similar structures with diffiere
distributed, and fair distribution of storage load doesingily representation for the coverage of tree nodes.
fair distribution of access load. Therefore, we need togtesi
an explicit access load balancing mechanism in DPTree.

To address these issues, we propose a suite of efficient solul
tions, which constitute the following four major contribrs
of this paper. 1) We propogese branch oriented distributign
which distributes (and replicategee branchesi.e., the tree
nodes alc_)ng the path from the root to leaf nodes, as atomic Fig. 1. An illustrative example of R-tree.
units to different peers. This scheme correlates the nummber

replicas for a tree node to its access frequency, and thosed# d To process a query _in these.index structures, the coverage
not incur single points of failure and performance botttd of a tree node is examined against the query starting from the

2) We propose dree-aware overlaywhich maps peers to an root node. If the coverage of a tree node does not enclose the

ID space in accordance with their assigned tree nodes, and t uery, the subtree rooted at this tree node does not need to

organizes peers into an overlay based on the design penci E_lgxammed, €, the subtr_ee dcan ‘gfﬁed Othe_rwme,fglned
of skip graph [1] in the ID space. This overlay structur lidren's coverage IS examined, and the query 1S contiretie

enables efficient tree navigation yet is easy to maintaiiwa) e child (or children) whose coverage encloses the quémy. T

proposeaggressive navigatioalgorithm, through which peers Proc€ss gontmues till every part of the tree is either pduore
aggressively forward messages to the destinationsgfy) —*@minec. . o

steps on DPTree with high probability. 4) We propesavelet- Balanced tree indexes have the following nice features.
based load balancingiechanism, which leverages wavelet tg) Different from hashing techniques, they preserve logall

monitor the load distribution in the system and adjust ttaello among data obje(_:ts, which is essential for efficient prongss
among peers in a light-weighted yet effective fashion. of complex queries. 2) They are fully dynamic and auto-

. atically adapt to data distribution. 3) They do not need to
As a proof of concept, we show how different types of ;
queries, i.e., point query, range query and KNN query, can dexdead spacéthe data space that is not populated by data

easily and efficiently supported in DPTree. Through emeiOBJ?Srt:)élwgrli(iErg ;g?ldgﬁgdg tOth:Sf cc))fv eﬂgﬁzs(%géég'gg'hgs
performance evaluation, we demonstrate the superiority 'lea 9 yp d

DPTree over existing works on various aspects index structures have emerged over the years.
9 P ) 2) Skip Graph:Different from other overlays that establish

The rest of this paper is organizgd as fOHOW.S' Wwe prOVidtfilerlay links based on the distance in an ID space, skip graph
the background and system model in next section. The des skipnet) establishes overlay links basedp®er distance

details of DPTree are given in Section Ill, and the algorﬂshr\ljghe number of peers between two peers) [1], [7]. Therefore,

c

abcd efghijk Imnopar st uvw

E?h procefss different ?uerles are descn(tj)eq g S.ectui/n kip graph is insensitive to the distribution of peers in e
e performance evaluation Is presented in Section V. ace. In skip graph, peers form into a doubly-linked rimg. |
review t.he related s_tudles in Section VI_. Lastly, we draw t ddition, a peer maintaingogN-1) skip pointers (neighbors),
conclusion and outline future research in Section VII. each of which skips ove2i peers with high probability1(<
i < logN-1). Conceptually, skip graph is a hierarchical ring
with logN levels. The leveB ring consists of all peers. It
A. Background is split into twochild rings (the ring before splitting is called
rent ringaccordingly), which are then recursively split until
number of peers in the ring is not greater than 2. A peer
joins one ring at each level.

II. PRELIMINARIES

We briefly introduce balanced tree indexes, skip graph,
wavelet, which are necessary to understand DPTree.

1) Balanced Tree IndexBalanced tree indexes are hier- 5 3 7 2 6 T
archical structures that recursively decompose a set @& datevel 3 @ @ @@ @ @ O
objects into f (called fanou) subgroups (tree nodes). The \ _/ \ / A \ /
decomposition stops when the number of data objects in gyl 2 @9 15@ 10 8
subgroup falls below a threshold value(called leaf node 13 11 14 &
capacity. The top level (coarsest) subgroup is the root node \ 13s 4 1\ 2 4/6
and the finest subgroups are the leaf nodes (other subgroupsl 1 15@9 14 8
are callednon-leaf nodes A leaf node stores theoverage 13 11 N\ 16 #8345 5 10
(enclosing region) of its corresponding subgroup and the 1{:’;}3
storage addresses of the data objects in the subgroup. Igvel 0 1% 1o
non-leaf node stores the coverage of itself and its immediat 18 U
children. Fig. 2. An illustrative example of skip graph.

We use R-tree [6], a well-known balanced tree index, as anWe first explain how to form a "perfect” skip graph, where
illustrative example. The coverage of a tree node in the R-peer’s neighbor at levelof the overlay is at exactlg? peer
tree is represented by the smallest rectangle enclosirtat! distance away. Starting from level-0, the peers in a paiegt r
objects in the subgroup, calledinimum bounding rectangle are alternatively assigned to one of the two child ringsuFég
(MBR). Figure 1 shows an example. The left side depic&illustrates an example of a four-level skip graph formed by
the MBRs and right side depicts the tree structure. Oth&6 peers. Peer 1, 3,5, 7,9, 11, 13, and 15 form one child ring
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at level-1 and the rest of the peers form the other child ririgpr illustration, we put the original values as the leaf reodé
at level-1. Each peer has four sets of neighbors with one #le¢ tree (depicted by dotted line). In addition, we depi th
at each level. average coefficients for the levels other than the top lesel a
The above overlay construction is too rigid to accommodalightly shaded numbers (they are not included in the wavelet
dynamic peer join/leave/failure. Therefore, some randesan transform/error tree).
is introduced to make the overlay flexible by allowing a The original signal can be reconstructed exactly from the
peer to randomly join one of the two child rings. With highwavelet coefficients by taking the reverse steps of decompos
probability, a peer’s neighbor at levels at2¢ peer distance. tion. One desirable feature of wavelet transform is thatynan
Routing is performed level-by-level starting from the topletail coefficients turn out to be very small and setting them
level. At a specific level, the routing message is alwaye O introduces only small errors in the signal reconstouncti
forwarded to the neighbor that is closest to the destinatidtmerefore, the original signal can be approximated by alsmal
without overshooting it. If no such neighbor can be foundwumber of the most significant wavelet coefficients.
routing descends one level and the above process repeiats. It
proven that routing can be resolvedlsyN steps with high B- System Model
probability in skip graph [1]. Without loss of generality, we consider balanced binarg tre
3) Wavelet: Wavelet is a tool used extensively in signa{fanout f = 2), i.e., a binary tree where the height of the left
processing (for details, please see [17]). It provides siefv subtree and right subtree of any tree node differs by at most 1
data at different resolutions, called esel of decomposition Note that our proposal is not limited to fanout of 2 thoughe Th
In the following, we introduce the basic concept of HarP2P system consists of N peers with homogeneous reséurces
Wavelet, which is simple and fast to compute. Harr WavelgVe call the peer owning a data object as this data object’s
consists ofaverage coefficienfor averagg and detail coeffi- owner peer and the peer storing the index of a data object
cients(or differencey of a signal. The average coefficients ands this data object'index peer The index of a data object
detail coefficients at a level of decomposition are obtaings a tuple(value vector, locationwhere the value vector is a
by pairwise averaging and differing of the averages on thector of values of the data object on different attributes]
previous level of decomposition. the location is the identifier (IP address) of the owner peer.
We use a simple sequence consisting{®f 4, 3, 3, 7, 13,
15, 1} to illustrate how Harr Wavelet is formed. The averages . IIl. DPTREE o
and differences at level-decomposition are obtained 48, .We first present the tree bra}nch orilented distribution qad th
3,10, 8 and{2, 0, 6, -14, respectively. We then repeat thighigh level features of DPTree in Sgctlon III-A. Wg then qlmu
process on the averagel$( 3, 10, §) to get the averages angthe overlay structure and navigation algorlthmlln Sectiidn | .
differences at level decomposition ag3, 9} and {0, -2}, B The access load balancing mechanism is presented in
respectively. The leved- decomposition is obtained similarly Section IIl-C. Lastly, we explain how to maintain the ovgrla
as {6} and {6}. The wavelet transformis defined as the Structure and tree structure upon peer join/leave/faime
average coefficient at the top level of decomposition, fetid data insertion/deletion in Section I1I-D.
by the detail coeffic_ignts at increasing resolution (desirep A Overview of DPTree
levels of decomposition). Thus the wavelet transform fa th ] ] ) )
original 8-value signal ig6, 6, 0, -2, 2, 0, 6, -11 Each of .WQ explam the design .ratlonale fqr tree pranch oriented
the 8 individual coefficients is calladavelet coefficientn the distribution before presenting the details of this scheme.
remaining discussion, we refer wavelet transform as wavele First, as mentioned earlier, coupling each tree node with a

$3.0:6 peer would incur performance bottlenecks and single paihts
d&'m failure at the peers responsible for the higher levels otrie.
Thus, it is better to decouple the concept of a tree node from
/ \ a peer. This not only avoids the aforementioned problemts, bu
d20:0 d21:-2 also renders the system the flexility to develop/optimizsi-in
/3\ /‘)\ vidual mechanisms for tree maintenance, overlay maintan
dio2  di:0  diz6 dix-14 and load balancing according to the patterns of data update,
3 10 8 peer update and load distribution, respectively.

Second, we observe that access on a tree normally proceeds
from the root down to a leaf node of interest by traversing
all non-leaf nodes along the path. This observation implies
that the tree nodes on a tree branch (consisting of the tree
nodes along the path from the root to a leaf node) are accessed
together. Thus, it is beneficial to distribute the tree nooles

2043 3 7 1315 1
Fig. 3. An illustrative example of wavelet error tree.
Denoting thek!" average coefficient and detail coefficien
at levely decomposition as;, and d; ., respectively, the
wavelet can be represented by a binary tree structuredcadle
error treein the Iiteratu_rg-. In_ the error tree, the average at t tree branch to the same (or same set of) peer(s).
top level of decomposition is the root of the tree. The detal

ficient at the top level of d ition is th v ghil Based on these observations, we propose tree branch
coetlicient at the top level ol decomposition IS the only Eniljenteq distribution, which distributes (and replicatéree

of the root. Each'of the node representing a .dEta” (?O.emc'en';'ranches as atomic units to different peers. Each peer maanag
(d; %) has two children representing the detail coefficients at

th_e next |9W9r level of decomposmo'jj@L?k anddj—l,%—&-l)-. 1in the case when peers have heterogeneous resources, weecproper
Figure 3 illustrates the error tree for the above 8-valuaaig weighting functions as suggested in [14].
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one or more tree branches (leading to one or more leaf nodedher side of the subtree for each level of its local tree, (ite
which form thelocal tree of this peer. A peer stores the indexemote child node). However different peers might maintain
of the data objects enclosed in the assigned leaf nodes, Thiierent number of tree branches, resulting in differeeéns
this peer is the index peer of these data objects. In addfion having different number of routing pointers. This woulddea
each non-leaf node in the local tree, a peer stores the g@werto uneven distribution of routing load among peers.
and height of its two immediate child nodes, used for tree We propose to organize peers intotrae-aware overlay
navigation and tree balance invariance checking, res@deti which is decoupled from but aware of the tree data structure.
Note that the two immediate children of a non-leaf node in tHa tree-aware overlay, peers first obtain a total order thihou
local tree may or may not be present in the local tree, calle¢@e-aware peer naming schenaad then form an overlay
local child nodeandremote child noderespectively. over the ordered space based on the design principle of skip
Figure 4 illustrates an example for DPTree. The leaf nodgsaph (Section II-A.2). Tree-aware overlay enables efiicie
are grouped into 16 partitions (depicted by the grey reatavigation on the tree yet is easy to maintain.
angles), which are allocated to 16 peers. For the clarity of Tree-Aware Peer Naming.Tree-aware peer naming scheme
presentation, we number the tree nodes as Node 1 to Nadsigns each peer a unique identifier, ijgeerID. These
53 and the partitions as P1 to P16. Each peer manages fiberIDs provide a total order of peers, which reflects the
assigned leaf nodes as well as the non-leaf nodes on the tomality among assigned tree nodes. The naming scheme works
branches leading to the assigned leaf nodes. For reaglabilis follows. Each edge in the tree is labelled(asr 1. A
we only show the local trees of Peer 1, 11 and 16 depictggée node obtains &reenodelD which is the concatenation
by the dotted polygons in the figure. For instance, the local the labels along the edges on the path from the root to
tree of peer 16 consists of the assigned leaf nodes 19-22 #imd tree node. The treenodelD of a leaf node is caiadiD
the non-leaf nodes on the tree branches leading to these kgadcifically. While a peer might manage a couple of tree
nodes, i.e., Nodes 37-38, 46, 50, 52, 53. Node 45, 49 andi&¥anches (and leaf nodes), it obtainsgeseriD as the smallest
are the remote child nodes of Node 50, 52, and 53 in the lod@hflID among all the leaflDs of the leaf nodes that it manages
tree of Peer 16, respectively. The lexicographic order among peerlDs defines the totalrorde
of the corresponding peers.
Figure 4 illustrates the naming scheme. The left edge and
---- right edge of each node are labelled with 0 and 1, respegtivel
The peerlDs are depicted at the bottom of the figuieor
instance, Peer 11 manages two leaf nodes 29-30, which have

276\/ N leaflD as 0110 and 0111, respectively. Thus, Peer 11 obtains
I f\_l .7\3 its peerID as 0110. The left-to-right order depicted in tgerfe
9 101112 \ represents the total order of the 16 peers.

7 -
B -

Skip Graph Based Overlay. Above naming scheme maps
peers to an ID space. The distribution of peers in the ID
space might not be uniform as a result of load balancing.
Therefore, we need to construct an overlay that is insessiti
to the skewed distribution of peers in the ID space. We olaserv
that skip graph satisfies this requirement. Thus, we organiz

DPTree essentially is a fU"y distributed multi-dimensabn peers into a skip graph in the ID space. In addition, a peer
balanced tree index. It inherits the nice properties of reént periodically exchanges heartbeat messages with its neighb
ized balanced tree structures, i.e., locality presenau@ptiv- to maintain the consistency of the overlay structure (to be
ity to dynamic data distribution, avoiding indexing deads®, detailed in Section I1I-D).
and ability to support various types of queries. In addition 2) Aggressive Navigation:Navigation addresses how to
DPTree has its own unique feature, i.e., fair load distithut npayigate to the index peer managing the index of a requested
both Vertica”y and horizonta”y. Vertica”y, the tree rexat data Objec't Since each peer has 0n|y a partia| view of the
the higher levels of the tree have more replicas comparedtge structure, navigation in DPTree is nontrivial. We firsed
the tree nodes at the lower levels of the tree. This deSigidaVOto determine which part of the over|ay (tree) m|ght cover
the single points of failure and performance bottleneckscv he requested data object or destination, isearch space
would normally be associated with the higher levels of a tregsplution and then get to that part of the overlay, ireyting.
structure. Horizontally, the density of peers managintedht ~ Search Space ResolutionSince tree-aware overlay is
portion of the tree (the number of tree branches assignedckhstructed over the ID space, search space resolution is
different peers) reflects the access frequency of diffedetd to estimate the leaflD(s) of the leaf node(s) covering the
objects (through load balancing to be discussed later), i.gestination, denoted atestiD This is achieved by examining
more peers manage the frequently accessed portion of #1e tgepeer's local tree as follows. A peer examines the tree node
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Fig. 4. An illustrative example of DPTree.

B. Overlay Structure and Navigation Algorithm 2treenodelD, leaflD or peerID bear no relationship with thenbers used

. . o label each tree node (1-53) and partition (P1-P16). Tterles for the
1) Tree-Aware OverlayOne possible solution to constructtIDurIoose of illustration only.

the overlay is to couple the tree _dat{_i structure with .th.elayer 30nce the index peer is found, the owner peer can be obtairsilgy &am
structure. That is, each peer maintains a pointer pointirtge the index peer. Thus we focus on navigating to the index peéhis paper.
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in its local tree with the treenodelD as the currently oledin first scenario, one of the current peer's neighbors at level-
destID (initially set to wildcardx). If there is no such tree (h-i) must be closer to the furthest possible destID without
node in its local tree, this peer can not refine the destihé&urt overshooting it. Therefore, this neighbor is chosen to &odv
Otherwise, the child node that covers the destination isredt the request. As a result, the peer distance to the destinatio
and examined further. This process continues till eithezad | («}) is then reduced te:; — dj,—; = x; — 2& < 25 For the
node or a remote child node of the local tree is reached. dacond scenario, the request may or may not be forwarded at
the former case, the current peer is the destination and thés routing step. If the request is forwarded,is reduced to
navigation terminates. In the latter case, destID is refagd d;,_; — z; (< 25) Otherwise,z; equals tox; (< Qﬂ) O
Ax, which indicatesA, the treenodelD of this remote child Let's go back to Figure 4 to illustrate an example for
node, is a prefix of the destID. navigation in DPTree. Assume Peer 1 wants to navigate to leaf
Routing. The destID (with wildcard«) obtained above node 13 (please refer to Figure 2 for the overlay structure).
through search space resolution actually represents a raRger 1 invokes search space resolution and obtains thé&destl
of IDs in the ID space. Therefore, the routing algorithnasix. Since the peerlD of Peer 148000, the furthest possible
for skip graph as mentioned in Section 1I-A.2 can not beestID is111...111. Peer 1 examines its neighbors at the top
simply applied here. Instead, we first need to decide whidével and routes the message to Peer 9. When Peer 9 receives
one of the IDs in the range specified by the destID shoultle message, it invokes search space resolution and stilhsb
be used for routing. After careful examination, we obsentle destID asl*. Similarly, Peer 9 examines its neighbors at
that the ID furthest away from current peer’s peerlD shouldvel 3. Since the only neighbor at this level (Peer 1) isHeirt
be used for routing. The rationale behind this aggressigevay from the destID, routing descends one level to level 2.
navigation algorithm is that even though we might overshogt this level, Peer 9 forwards the message to Peer 13, which
the destination by routing towards the furthest possib&lBe is closer to111...111 without overshooting it. When Peer 13
the furthest possible distance to the destination is habtedreceives the message, it invokes search space resoluttbn an
each step. With the initial furthest possible distance t® thefines the destlID ag00«. The furthest destID from Peer
destination agV, the navigation to the destination is finished.3 is 1000...000. Peer 13 examines its neighbors at level-2
in logN steps with high probability (Theorem 1). Algorithmand does not forward the message at this level since neither
1 illustrates the pseudo-codes for the navigation. neighbor qualifies. Routing descends to level-1. Similarly

Algorithm 1 Algorithm for Aggressive Navigation in DPTree.N€ither neighbor at level-1 qualifies and routing descemts o
Navigation at Peer i: i.navigate(q, destID, j) (destlD indicates the more level to level-0, where the message 1S forwarded to the

estimated leaflD for q. j, initialized to the top level of the overlay, indicates  destination Peer 12.
at which level of the overlay the routing should proceed.)

1: if q € i.index then C. Wavelet-assisted Load balancing

2 e In the following, we first describe an intuitive solution for

4: Refine destID for by invoking search space resolution. load balancing and point out the limitations, which motvat

5: z = the furthest ID from Peet specified by destID. wavelet-assisted load balancing. We refer access loadads lo

6: m = levelj neighbor ofi that is closest tar without overshootinge.  if the context is clear.

;; i ;nzzj'_\lllfLL then One solution for load balancing as suggested by majority
9: GOTO 6. of existing works (e.g., [3], [5], [10], [14]) is to let an

10:  end if ' ' overloaded peer choose the least loaded peer in the system
11 Forwardnavigate(q, destID, j) to m. as thetarget peerto shed part of its load to. The target peer

12: end if merges its load to its neighbors, leaves its original placel

Theorem 1: Given N peers in DPTree, a peer can navigatejoins the overlay as the neighbor of the overloaded peer
to any part of the overlay i©(logN') hops (steps) with high to take part of its load. We call this solution Esave-rejoin
probability. mechanism. This mechanism has two drawbacks. First, the
Proof: We prove this theorem by induction. Given the pegseers in the neighborhood of the target peer might not be
distance to the destination at the beginning of itfestep as lightly loaded. Merging the load from the target peer to its
z; < 57+, we prove the peer distance is halved after thiseighbors might cause the neighbors become heavily loaded,
routing step, i.e.z} < 2& Once this is proven, we can easilyresulting in cascading load balancing operations. Secitved,

derive afterlogN steps, the peer distance to the destination lisave-rejoin process causes changes on the overlay linis, a
reduced tol. The message can then be trivially forwarded tthus requires update on the overlay, which might be costly.
the destination with one additional step. As suggested later, in some cases when the target peer and

Assume the highest level of the overlayhigh = logN with  the overloaded peer are nearby in the overlay, it might be a
high probability). Recall that each peer hag N neighbors better option to let the extra load ripple through the neagbkb
with the levels neighbor at peer distance (denoteddapas to reach the target peer without affecting the overlay stmec

27 with high probability (0 < j < logN-1). We observe that if a peer somehow has a global view of
We start from the base case with= 1. It is obvious that the load distribution in the system, both weaknesses meedio
1 < 2% =N. above can be avoided. To obtain such a global view, we need to

Assume that we are at the beginning of #i& step and summarize and disseminate the load distribution of theesyst
the peer distance to the destinationzis < 2% We have in a compact yet sufficiently accurate format. Inspired by

two possible scenarios: 1}; > Qﬂ 2) x; < 25 For the wavelet, a well-studied compression tool in signal procgss
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we propose wavelet-assisted load balancing, which leesrad\fter message exchange with the neighbor at the top level
wavelet to facilitatdoad monitoringandload adjustingn P2P  (level-3), each peer obtains the loadwavelet of the system.
systems in a light-weighted yet effective fashion.

To perform load monitoring, peers exchange load infor-

level 3
= . {1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}
123456 78 910111213141516 1 9

level 0

mation with their neighbors at each level of t_he overlay level 1 B789104012)  (13,141516123,4)
through heartbeat messages and form the approximate wavede} 4 (5,6} {7.8}{9.10{11,121314}15 16} 5 13
of the load distribution in the system, callddadwavelet g s, 67 EapotyE2isssn & g et
Load adjusting is performed in the following three steps. 1) 2 4 6 8 10 12 14 16 (7,89,10111213,14) {15,16,1,2,3,4,5,6}
. o . level 2 7 15
Overloading monitoring: guided by loadwavelet, peers CEN oy 678 oapatiopistetsts 23456788 (1011213141516,
easily determine whether they are overloaded. 2) Targat pee} : 5 = 2 10
selection: an overloaded peer leverages the multi-résnlut 2426 8o 0{11215141151612)  (#56L89101) {1215141516123)
. . . 3 7 11 15 4 12
view of loadwavelet to find a target peer, 1.e., the peer thfat(z,3,4,5} {6.7,8,9} {10,11,12,13}14,15,16,1} {6,7,8,9,10,11,12,13}  {14,15,16,1,2,3,4}
IS Ilghtly Ioaded and Whpse nelghborhOOd IS Ilghtly Iloaded %4,5,6,_7} {86,9,10,2.1}(1120,13,1:1,1511115,1.2@) {8,9,10,?1,12,13,14,15){16,1,2,%,‘21,5,6,7)
as well. 3) Load shedding: peers adjust their foaming 4 8 12 16 8 16
two mechanisms, i.erippled load sheddingand direct load Fig. 5. An illustrative example of loadwavelet.

shedding depending on which one is more cost-effective by \q, we discuss how to relax the assumption of unbounded
taking into consideration the cost incurred by index moveime

; communication resource. The length of the complete wavelet
as well as overlay maintenance. - formed at higher levels of the overlay is large (e.g., thelen
Compared to the aforementioned existing works, our 103 {ha |0adwavelet formed at levebf the overlay i2+1), and
balancing mechanism has the following three advantages.cllnanging such complete wavelets is costly. To reduce this
It uses a light-weighted mechanism to maintain a suffienttogt \ve select the: most significant wavelet coefficients to
accurate summary of the load distribution in the systerg proximate the loadwavelet, whereis a tunable parameter

2) When choosing a target peer, it takes into conS|der§1t|B lancing the precision and the construction cost of theslgav
the load on a peer as well as the load on the peers in d\tﬁhich will be evaluated in details later).

neighborhood. In contrast, prior works only consider thedlo Up to now, we assume that a peer's levaleighbor is at

on a peer itself. 3) It takes into account the cost incurred té\kactly 21 peer distance. In reality, a peer's leveheighbor

both index movement and overlay maintenance, and switches; o peer distance with high probability instead of exactly.

between two different load shedding mechanisms dependifgerefore, during the above wavelet formation, the loadesl

on the cost. In contrast, prior works only consider the cést g, certain peers might be counted more than once or not be

index movement and conduct load shedding using a variantfnted (when a levelneighbor is at peer distance less than

direct load shedo!lng. . L 2¢ or larger than2?, respectively). Since the percentage of
We now explain the details of load monitoring and loag,qyndant load values or missing load values is expected to

shedding. be very small, this doesn't affect the accuracy of loadweivel
1) Load Monitoring: We first assume that we have a perfe%ignificyantly. ' y

skip graph (where a peer’s neighbor at levés$ at exactly2’ 2) Load Adjusting: As mentioned earlier, load adjusting

peer distance) and unbounded communication resourcerto fQfynsists of three tasks, i.e., overloading monitoringgetpeer
an exact (complete) loadwavelet. Later on, we discuss hoWd@ection. and load shedding.

relax these assumptions. . Overloading Monitoring. A peer obtains the average load
A peer first exchanges its current load with its leVel-of the system easily from the loadwavelet, i.e, the first detve
neighbor clockwise on the overlay and forms the wavelet fegefricient. If the current peer's load is more thatimes of
the “signal” consisting of two values, i.e., its current doa,e average load, it is marked as an overloaded pe.a
and its neighbor’s current load. This peer then exchangss th,,5ple system parameter determining the tradeoff betiveen
wavelet with its levelt neighbor clockwise on the overlay cost of load balancing and how well the system is balanced. A
and forms the wavelet for the signal consisting of four vajuesmgajier value creates a more balanced system at higher cost.
i.e., the load on this peer and the following three conseeuti Target Peer SelectionIn addition to providing a compact
peers. Following this process, through message excharije W\ymmary of the load distribution, loadwavelet also proside
a leveli neighbor on the overlay, the wavelet coverid" myiti-resolution views of the load distribution in the syst.
consecutive peers is obtained. This process continuethéill \yve exploit this multi-resolution feature to choose the figh
top level of the overlay is reached. At this point, we obtaipygged peer residing in a lightly-loaded neighborhood &s th
the loadwavelet of all the peers in the system. target peer. For presentation clarity, we use the waveter er
We use Figure 5 to illustrate an example of loadwavelet {fe (described in Section 11-A.3) to explain how targetrpee
a system consisting of 16 peers (please refer to Figure 2 fQfiection is performed. A peer examines the error treeirsgart
the overlay structure). For illustration, we representre@®  from the root node. If the detail coefficient is greater than
each level of the overlay on a straight line. The numbers in the average load on the left half of the overlay is smaller.
the parentheses are the peers whose load values are incl . we drill down one level on the error tree and enter the

in the loadwavelet formed at the previous level of the o¥erlaeft child. On the other hand, if the detail coefficient is dema
“We set the leaf node capacityto be the payload size of a packet. Thethan .O.’ the. right child is .entered' In.the C,ase When th.e .detall
rationale is to let a leaf node also serve as the finest univad transferred CO€fficient is 0, we examine both children’s detail coeffitse

between two peers during load balancing. and enter the child node with larger absolute value (imgjlyin
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one quarter of the overlay has the lightest load among theln the following, we provide the high level description on
four quarters). This process continues till we reach théobot the operations performed upon peer join/leave/failure datd
level of the error tree where the target peer is obtainechdJsiinsertion/deletion. For more details, please see [12].
Figure 3 as an example for the load distribution in a system1) Peer Join/Leave/FailureA peer joins the overlay level-
with 8 peers, target peer selection proceeds as follows. We-level starting from level by establishing two neighbors
first examineds o. Sinceds o is a positive value, we enter theat each level. This process incl@&gN messages in total. In
left child and examinels . d2 is 0, and its left child node addition, the newly joined peer publishes the index of thia da
d1,0 has larger absolute value. Thus, we enter the left chilought with it to the system (to be detailed shortly).
(d1,0) and subsequently choose the first peer (with load)as  Once a peer detects that one of its neighbors at leigehot
as the target peer. alive (due to lack of heartbeat messages as described above)
Load Shedding. Once a target peer is chosen, the loag starts to re-establish its neighbors level-by-levelrtiig
on the overloaded peer is adjusted through two differeflbm levels. This process incurs at mogtogN messages in
mechanisms, rippled load shedding and direct load sheddiggtal. In addition, the tree branches previously assignetiis

depending on the cost incurred by both index movement apger is re-distributed to other alive peers through thexnde
overlay maintenance. For presentation brevity, we des¢hib republishing process as described above.

ideas of these two load shedding mechanisms. For the details) pata Insertion/Deletion:Inserting (deleting) a data ob-

on estimating the cost of these two mechanisms, please R&S basically is to publish (remove) the index of this data
[12]. . . . . Object. This involves two steps: locating the leaf node (and
In rippled load shedding, the load ripples through the neighorresponding peer) to insert (remove) the index through th
bors to reach the target peer. The target peer first mergesgjtgijar procedure as tree navigation, and inserting (aejgt
load to its neighbors. Then the overloaded peer sheds hiédf ofihe index of the data object on the chosen leaf node (and
load to its immediate neighbor (by moving the correspondirgbmting or merging the leaf node when necessary). The
leaf nodes), which then sheds the same amount of load to HT*Fanges on the coverage and height of the tree nodes upon
neighbor’s neighbor. This process continues till the tBpg®r yata insertion/deletion are propagated to the peers memagi
is reached. During rippled load shedding, although moviteg tthe tree nodes in the subtree rooted at the parent node of the
leaf nodes between neighbors causes changes on the peefifsnode performing the changes (since all these peersireco
of the peers involved, the order among peerIDs is not changgd coverage/height information of this node). We observe
and thus the overlay links are not changed. Therefore, gyt through the tree aware peer naming scheme (Section IlI-
advantage of rippled load shedding is that it incurs onlyeind g 1) gl these peers are consecutively positioned in the ID
movement cost but no overlay maintenance cost. Rippled |0§@ace. Therefore, this update incursmessages anéogn
shedding works well when the overloaded peer and target PBESpagation hops where is the number of affected peers.
are nearby in the ID space. i In addition, with the increase of the tree levels, the change
Direct load shedding is similar to the load shedding scherg@ the corresponding tree nodes become less frequent.sThis i
adopted in the leave-rejoin mechanism. It requires theetargeneficial since the propagation of the coverage/heightgim
peer merge its load with its neighbors, leave its originatpl on the tree nodes at the higher levels is more costly than that
and rejoin the overlay as a neighbor of the overloaded pegrthe lower levels. Note that all these changes on the tree
to take over half of its load. In addition to incurring indeXstrycture do not affect the overlay structure since the totter
movement cost, the leave and rejoin of the target peer affeghnong peers does not change. This confirms the advantage
the overlay links, incurring overlay maintenance cost. of decoupling the tree structure from the overlay strucase

D. Maintenance in DPTree discussed in Section III-B.1.

We adopt the soft state mechanism to maintain the con-
sistency of the overlay structure and tree data structune. T
basic idea of soft state mechanism is to associate a stdie wit|n the following, we show how to support two most common
a timer, and refreshes (or deletes) the state if a I’efYEShm%es of complex queries, i.e., range query and KNN query,
message is (or is not) received before the associated timeDPTree (to support point query, we can directly apply the
expires. Based on this idea, a peer associates a timer vath egavigation algorithm presented in Section 11I-B.2 with the
of its neighbors and each of its indexed data objects. A pagiery as the destination).
sends heartbeat messages to its neighbors periodicallpdér
does not receive a heartbeat message from a neighbor be}‘&)
the associated timer expires, it infers this neighbor Isave’
or fails (and invokes overlay update to be detailed shortly) We extend the navigation algorithm given earlier (Section
Similarly, a peer republishes its data objects to the systdtB.2) to process range query. The difference of a rangeryu
periodically. If the index peer of a data object does notikece from a point query is that the destination is specified as aygue
a refreshment message before the associated timer expiregange instead of a query point. Therefore, during searcbespa
infers this data object disappears from the system (and&é@s/o resolution, all the tree nodes overlapping with the quengea
data deletion). This mechanism ensures the consistenatlof bneed to be entered and examined. If multiple child nodes need
overlay structure and tree data structure in a simple yat-ligto be examined, multiple threads of processing are invoked t
weighted fashion. examine these nodes in parallel.

IV. APPLICATION OFDPTREE

rq?ange Query
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Fig. 6. Cost of load balancing.

B. K Nearest Neighbor Query We evaluate the number of messages incurred by load

lancing under different network sizes, different initiacess

d distribution, and different sizes of (approximate)elat

?icated bym as discussed in Section IlI-C.1). We use Zipf-

iStribution controlled byoad distribution skewnes® model

e initial access load distribution. The default setting the
twork size, load distribution skewness, and wavelet size

E 24, 1, andN, respectively. For presentation brevity, we

A KNN query is processed in two steps, obtaining a goq%a
enough candidate set, and refining the candidate set thro
range query. To obtain a good enough candidate set, the p
managing the leaf node that covers the reference data G[hlject
that is closest to the reference data object (in the casedmat
of the leaf nodes covers the reference data object) is rdac
tg%‘gg ;hb? eg@”?;:ﬁ; &g\?vzgt(;m(;'r -irnhcgzxgzerb:,h?hr}sogggst:&esent the results with set to2 (the general trends observed

are closest to the reference data objects as the candictatel‘%réder different setting fod _are §|m|lar).

It is possible that some data objects in other peers mightl) Effect of Network SizeFigure 6(a) shows the result
be closer to the reference data object than the data obje¢féler different network sizes. The x-axis is on logarithmic
in the candidate set are. In order to obtain these closer daggle for readability. From this figure, we see the number
object, the second step is invoked as follows. The curreat p@f messages incurred by load balancing increases almost
obtains a query range centered at the reference data obj@&arly with the network size, which is expected. In adfifi

with the distance to théct* element in the candidate set adhe number of messages incurred by wavelet-assisted load
the radius. Then similar procedure as range query is emgloyBalancing is smaller than that incurred by the leave-rejoin
As soon as a closer data object is obtained, the candidate™8&ghanism, especially when the network size is large.

and the query range are refined. This process continues unti) Effect of Initial Load Distribution: Figure 6(b) shows

the refined query range is completely examined. the result under different initial load distribution (aifent
skewness values). The number of messages increases with
V. PERFORMANCEEVALUATION the skewness value. This is expected since more skewed load

_ _ distribution requires more load to be redistributed among
We now proceed to the evaluation of DPTree. We 'mpmers to make the systembalanced. The increase rate of
R-tree according to the proposed DPTree framework. cost incurred by wavelet-assisted load balancing ishmuc
evaluate DPTree from four aspects, i.e., routing, load bamaller than that incurred by the leave-rejoin mechanishis T
ancing, query processing, and maintenance. For presemtafiemonstrate the superiority of wavelet-assisted loachisalg
brevity, we summarize the results for routing and maintesanynder more skewed load distribution.
and present the detailed results for load balancing andyquer3) Effect of Wavelet SizeFigure 6(c) shows the result

processing (please see [12] for more details). We verify tha, jor gifferent wavelet sizes, i.e., 10, 20, 51, 102, 202, 51

routing to any part of the system. is'achieved Witm’.yN corresponding to 1%, 2%, 5%, 10%, 20% and 50% of the size
steps in DPTree regardiess of the distribution of peersanih ¢ ¢ original wavelet transform (1024). From this figures w

iSnpaCrf-cljn adrdltlor:,.wiﬁ /\Ile”\];y/tfhﬁ arvera:]%e dm?lni';enarrt}ce e.“f]rh see that when the wavelet size decreases, the number of mes-
curred per peer joinjieave/taiure a ata insertie sages increases. This is because more errors are introofuced

is low, confirming our discussion in Section IlI-D. signal reconstruction by a more compact approximate wavele
, which causes the selection of the target peers deviate fiem t

A. Load Balancing optimal ones, incurring some extra messages. However, even

To evaluate the performance of our proposed load balanciwgen the size of the approximate wavelet is only 2% of the
mechanism, we measure the number of messages require@riginal wavelet, the number of messages incurred by wavele
make the systemi-balanced, defined as a system withe assisted load balancing is still smaller than that incutvgd
{0,1,2,...,N},1; < 6-1 wherel; is the load of Peer i antlis the leave-rejoin mechanism (indicated by the horizontze i
the average load of the system. For comparison, we implemé&hthe figure).
the leave-rejoin mechanism (proposed in Mercury [3]) as This set of experiments demonstrates the superiority of
described in Section IlI-C. In the leave-rejoin mechaniime, wavelet-assisted load balancing. In addition, a compaet ap
least loaded peer is chosen as the target peer and the Ipaakimate wavelet can be formed as the by-product of heart-
shedding process is similar to direct load shedding. beat messages exchange between neighbors at almost no ad-
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Fig. 7. Query performance.

ditional cost. In contrast, the leave-rejoin mechanismuireg comes with the price of uneven load distribution among peers
non-trivial maintenance to keep track of the load distiifiut due to the naive data space partition scheme adopted in CAN.
in the system (to be explained in Section VI). In contrast, DPTree always achieves fair load distribution
through the initial load-aware data placement using branch
B. Query Performance oriented tree distribution and the subsequent waveletebas
We implement the algorithms to process three differetdad balancing.
queries, i.e., point query, range query and KNN query, in 2) Range Query:Figure 7(b) shows the result of range
DPTree. For comparison, we modify CAN overlay (by placinguery with query range varying from 0.01 to 0.1. For readabil
data objects in accordance with their attribute valuesatof ity, we only present the result with data distribution skess
randomly hashed values) and implement the query algorithgwst to 0 and 1, respectively. As expected, the number of
(similar to that described in Section IV) on top of CAN. Wanessages increases with the query range. In addition, the
choose CAN overlay for comparison in this set of experimentg&imber of messages incurred by DPTree is always smaller
due to the following two reasons. First, majority of priortk® than that incurred by CAN. This again confirms the efficiency
are based on CAN or some variants of CAN. Second, althoughour tree-aware overlay and navigation algorithm, and the
some proposals (e.g., [3]) might be superior to CAN in termsenefits of avoiding indexing dead space in DPTree.
of supporting one specific type of query, they can not support3) KNN Query: Figure 7(c) shows the results of KNN
all types of queries that we are considering here. query with the K value varying from 1 to 10. Similarly,
We evaluate the query performance under different dak& only present the result with data distribution skewness
sets, query workloads, and network sizes. Without loss &t to 0 and 1, respectively. From this figure, we see that
generality, the dimensionality of data objects is setdhe the number of messages incurred by DPTree increases very
data sets are generated as follows. A certain number of setsivly with the K value under both uniform data set and
points are first randomly generated in the 2-dimensional datkewed data set, and the number of messages incurred by
space. Then from each of these seed points, we generate sDRree is always smaller than that of CAN. Furthermore,
random data points with distance to the seed point followinge number of messages incurred by DPTree under skewed
Zipf distribution controlled bydata distribution skewnes8y data set is only slightly larger than that under uniform data
varying the skewness value, we obtain a spectrum of syntheset. In addition to validating the efficiency of our tree-aava
data sets ranging from uniformly distributed data set tdlyig overlay and navigation algorithm, this further confirms D&T
skewed data set. The total number of data pointR)isN. is adaptive to data distribution, which benefits KNN query
The query workload is generated as follows. We randomptocessing. In contrast, the number of messages incurred by
select a point as the query point for point query or referen@GAN under skewed data set increases rapidly with K values.
data object for range query and KNN query. For range querighis shows lack of the ability to adapt to data distribution
we vary the query radius from 0.01 to 0.1. For KNN querieseriously degrades the performance of CAN under skewed data
we vary the value of K from 1 to 10. We inject 1000 randorget.
queries into the system and the results presented beloweare t

average results over these queries. Since the generaktrend VI. RELATED WORKS
observed under different network sizes are similar, we only A few recent works propose to organize peers into a
show the results under network size as 1024. balanced tree structure to support complex queries in P2P

1) Point Query:Figure 7(a) shows the result of point quensystems, e.g., BATON [8], and VBI [9]. BATON simply
with data distribution skewness varying from 0 to 1. The nunassigns each tree node to a peer and then establishes a chord-
ber of messages incurred by DPTree is always smaller thde routing structure on each level of the tree. It only wsrk
that of CAN. This confirms the efficiency of the tree-awarér one-dimensional data. In addition, BATON creates skkwe
overlay and aggressive navigation algorithm, and the hisnefraffic distribution. While the peers responsible for the dstv
of avoiding indexing dead space in DPTree as discussedlénel of the tree perform majority of the routing, the peers
Section II-A.1. In addition, the humber of messages in@irregesponsible for the higher levels of the tree are hardly used
by DPTree is insensitive to data distribution skewnesss THVBI [9] extends BATON to support multi-dimensional data
confirms the adaptivity of DPTree to data distribution. ks objects. However, it follows the design principle of BATON
the number of messages incurred by CAN also does not chamagel also incurs skewed traffic distribution. Fat-Btree [18]
significantly under different skewness values. Howeveis tha distributed one-dimensional balanced tree (Btree) deslig
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