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Abstract— In this work we devise algorithmic techniques to
compare the interconnection structure of the Internet AS Graph
with that of graphs produced by topology generators that match
the power-law degree distribution of the AS graph. We are guided
by the existing notion that nodes in the AS graph can be placed
in tiers with the resulting graph having an hierarchical structure.
Our techniques are based on identifying graph nodes at each tier,
decomposing the graph by removing such nodes and their incident
edges, and thus explicitly revealing the interconnection structure
of the graph. We define quantitative metrics to analyze and com-
pare the decomposition of synthetic power-law graphs with the
Internet-AS graph. Through experiments, we observe qualitative
similarities in the decomposition structure of the different fami-
lies of power-law graphs and explain any quantitative differences
based on their generative models. We believe our approach pro-
vides insight into the interconnection structure of the AS graph
and will find continuing applications in evaluating the representa-
tiveness of synthetic topology generators.

Index Terms—Internet Topology, AS Graph, power-law graphs

I. INTRODUCTION

In recent years, a significant amount of work has focused on
understanding the properties of the Internet Autonomous Sys-
tem graph. In their pioneering study which compared graph-
based models for the Internet topology, Zegura et al. [24] iden-
tified that the Internet has a non-random structure that was not
captured by then-existing topology generators. Specifically,
they emphasized the presence of an hierarchy in the manner
in which Autonomous Systems 1 were interconnected. Subse-
quently, another important set of observations was reported by
Faloutsos et al. [10], regarding the statistical properties of some
metrics of the Internet graph. Using measurements of the con-
nectivity of the Internet nodes at both the router and the AS
level, they found that several graph metrics such as the distri-
butions of node degrees, the degree ranks of the nodes, and
the number of nodes within h hops of each other, could be
described by power-laws. The presence of power-laws in the
Internet graph is now considered to be empirically well estab-
lished. Similarly the notion of an hierarchical structure in the
Internet graph, and the presence of a routing hierarchy has also
been commonly noted in literature [24], [13]. These observa-
tions have been a starting point for a flurry of work on devel-
oping synthetic Internet topology generators. Generators such

1An AS is a group of routers and end-hosts that have common routing poli-
cies, with respect to the rest of the Internet.

as Tiers and Transit-Stub create graphs with an explicit hier-
archical structure as a model for the Internet. From another
starting point, work by Barabasi et al. [5], Aiello et al. [2] and
others [7], [17], [15] has led to topology generators that aim
primarily to match the power-law degree distribution of the In-
ternet graph.

There have been several studies comparing power-law de-
gree based generators and the Internet graph. In [18], the au-
thors compared the graphs produced by these generators based
on metrics such as power-law exponents, degree rank, hop-
plot and eigenvalue distributions. In [7] the authors intro-
duced the clustering coefficient and the median shortest path
length as useful metrics for distinguishing among the different
topology generators. And, most recently, Tangmunarunkit et
al. [22], carried out an extensive comparison study, using a wide
range of metrics, including expansion (neighborhood size), re-
silience (size of a cut-set for a balanced bipartition) and distor-
tion (minimum-communication-cost spanning tree). Although
there isn’t yet a consensus on which of the above-mentioned
metrics are the most important, one common property of these
metrics is that they do not give insight into the structure of the
graph. Our work in this paper addresses the following ques-
tion: how well do power-law graphs capture the interconnection
structure (such as hierarchy) of the Internet graph?

One possible way of thinking about the “structure” of a graph
is by comparison with canonical topologies such as a star, a
mesh or a binary tree. In our context, there is a widespread
belief that the Internet graph is hierarchical in structure. In
this study, we use algorithmic techniques to explore the struc-
tural properties of power-law graphs with respect to the Internet
graph, guided by existing notions of how ASes connect to each
other. Using the notion that ASes are arranged in tiers, we iden-
tify nodes at each tier, and recursively decompose the graph to
expose its interconnection structure. We define metrics of the
resulting decomposition, which then allow us to quantitatively
and statistically compare the structural properties of power-law
graphs and the Internet graph. The properties of the decompo-
sitions of these graphs allow us to also examine questions like
whether the graph is hierarchical in nature. We observe, and
through statistical tests exhibit, similarities in the decomposi-
tion structure of power-law graphs as compared to the Internet
AS graph. We also find that both the skewed-degree distribu-
tion and the degree of preferential connectivity play a role in
defining the decomposition structure of these graphs. These
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two properties cause a large number of nodes (which also have
small-degrees) to directly depend on the high-degree nodes for
connectivity to the rest of the graph, and also contribute to the
resiliency of the graph by causing high-degree nodes to connect
with each other.

The rest of this paper is organized as follows. In Section II,
we elaborate on existing notions of the structure of the In-
ternet graph. Section III introduces algorithmic techniques
which leverage knowledge of structural properties of the In-
ternet graph and apply them to power-law graphs and the In-
ternet graph, to achieve an hierarchical decomposition of these
graphs. We describe some metrics of interest which can be used
to compare the decompositions of the different graphs. We also
describe some related work which has also examined issues like
the presence of an hierarchy in the AS graph, and in power-law
random graphs. In Section IV we introduce the graph families
that we examine as part of this study. Section V discusses the
results from the decomposition, and their implications for the
structure of the graphs. We also examine the decompositions
of the different families of graphs, and compare the similari-
ties in more detail through statistical tests. We describe future
directions for this work, and conclude in Section VI.

II. STRUCTURE OF THE AS GRAPH

The Internet is composed of a collection of administrative
domains called Autonomous Systems. Based on the properties
of the routes starting, ending or passing through an AS, it can be
classified as either a stub or a transit AS. As defined in [24], a
stub AS is one such that the path connecting any two end-hosts,
u and v, in the Internet traverses this AS only if either u or v
belongs to this AS. Transit ASes do not have this restriction,
and can hence serve as an intermediary in any path. Stub ASes
usually correspond to universities or large commercial organi-
zations, which rely on transit ASes for connectivity to the rest of
the Internet. They themselves do not offer such a service to any
other AS. Transit ASes, in Internet terms, are service providers
and are typically regional and national level ISPs, or backbone
networks. They offer connectivity to several stub ASes and are
also well-connected to each other.

Stub AS

Transit AS, 
at tier 2

Transit AS at 
 tier 1

Fig. 1. Structure of the AS graph

The notions of transit and stub domains suggest a structure as
to how ASes connect in the Internet. Stub nodes connect with

one or more transit nodes, and all paths originating or culminat-
ing in a Stub node must traverse these provider transit nodes.
Also, transit domains can be either providers to, or customers
of other transit nodes. Thus, based on these provider-customer
relationships, each AS in the Internet can be considered as be-
longing to a particular tier 2, with the ASes at the highest tier
being the transit domains that have no providers (the so called
Tier-1 providers). Stub ASes are completely dependent on the
transit nodes in the tier above for connectivity to the rest of the
Internet (to a lesser extent, this is true also of lower tier transit
ASes. However transit ASes can also route some traffic through
peering relationships they have with other transit ASes in the
same tier.).

The arrangement of nodes into different tiers, as described
above, and the relationship between the transit and stub ASes
also provides a possible hierarchical structure of the Internet
graph. One can conceive of the Internet as composed of a set
of transit ASes at the top of the hierarchy, offering connectiv-
ity to both transit and stub ASes, at the next tier. The second
tier transit ASes themselves provide connectivity to other ASes
below them, and so on. In Section III, we introduce techniques
that allow us to examine the structure of the graph based on this
notion.

III. EXPLORING STRUCTURE

We now describe the technique we use to understand and
compare the structure of the Internet AS graph with those of
graphs that have been generated to simply match the power-law
degree distribution of the AS graph. Our efforts are guided by
the interconnection properties of the transit and stub nodes in
the Internet AS graph, as described in the previous section.

We begin by describing a criterion to identify the root-level
transit nodes. We then decompose the graph by removing these
nodes and their incident edges from the graph. The procedure
is then repeated recursively, over every connected component
of the resulting graph. A concise description of the procedure
is as follows:

1) Given an input graph, G, select a set of nodes to be re-
moved.

2) Compute the connected components (CCs) of the graph
G obtained after removing the selected nodes.

3) Repeat the procedure recursively on the resulting CCs,
until the number of nodes that can be removed is less than
1.

This technique serves two objectives. It assigns the nodes of
the graph to a particular level (or tier): at each level of decom-
position, the nodes selected for removal belong to that level.
Also, the decomposition of the graph at each level exposes the
interconnection structure among nodes within that level.

A key aspect of this technique is the criterion used to select
nodes to be removed at each level of the decomposition. Our
first choice for this metric is based on node degree. We order
the nodes in each connected component in descending order
of degree and choose a fixed fraction α of the highest degree
nodes to remove. We justify using this metric by looking into
the degree of the ASes in the Internet in relation to the tier to

2or “level”; we use the terms “level” and “tier” (to which a node belongs)
interchangeably in this paper.
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Average degree
Tier 1 614.29
Tier 2 19.30
Tier 3 6.93
Tier 4 4.30

TABLE I
AVERAGE DEGREE OF ASES IN DIFFERENT TIERS

which they belong. Using the inference techniques developed
in [12], we first arrange the ASes into their respective tiers. The
average degrees of the Provider ASes3 appears in Table I. As
can be observed, the average degree of the ASes decreases as
we go down the tiers, suggesting a positive correlation between
a node’s tier and its degree. In Figure 2 we plot the ASes, ar-
ranged in the x-axis as per the tier to which they belong, with
their respective degrees in the y-axis. Looking at this figure we
observe that in the actual Internet, an AS with a smaller degree
can be placed at a tier higher than an AS with a higher degree.
This indicates that node degree does not completely capture the
semantics of how ASes are placed in the real AS graph.
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Fig. 2. Degree of ASes in different tiers

We considered two other metrics. The first is node rank, a
notion adapted from PageRank, a metric developed in [19] to
rank web pages. (A similar notion to capture the “authority”
of web pages was also developed in [16].) Let the nodes of the
graph be denoted 1, 2, ..., N . Let d(j) denote the degree of node
j, and let Nb(j) denote the set of j’s neighbors in the graph.
Then r(j) is the steady-state probability of visiting node j while
performing a random walk in the graph where each outgoing
link from a node is equally likely to be chosen, r(j) satisfies

r(j) =
∑

i∈Nb(j)

r(i)
d(i)

3The provider ASes correspond to the nodes we seek to remove at each level
of decomposition.

N∑

j=1

r(j) = 1

This metric is computed iteratively. Initially all nodes are
assigned the rank-value 1/N . At each step, the ranks of the
nodes are computed based on the above definition and normal-
ized such that ranks of all nodes sum to 1. This procedure is
repeated until the values of the node ranks converge4. Our third
choice of the metric is node stress, a metric that is based on the
link value metric defined in [22]. The stress of a node v in a
graph, is a measure of the number of node-pair shortest paths
that pass through v. We define the node stress of any node in the
graph to be the size of its traversal set, normalized by the num-
ber of all node-pairs in the graph. The traversal set of a node
v is the set of all node-pairs (s, d) in the graph, whose short-
est path traverses node v. After computing the Node Stress and
Node Rank of all nodes in the input graphs, we found that there
is a very strong correlation between the degree of the node and
its stress or rank. Therefore, we do not obtain any new infor-
mation about the interconnection semantics of the input graphs
using these metrics. Hence we restrict ourselves to presenting
results of the decomposition procedure, using only the node de-
gree metric.

We describe some metrics that allow us to characterize a de-
composition quantitatively.

• NCC quantifies the number of CCs at any level of the
decomposition.

• σCC is the standard deviation of the sizes of the CCs at
each level.

• D the depth of the decomposition, i.e., number of levels of
recursion until we do not find any more nodes to remove
from the CCs at that level of recursion.

• We also examine the distribution of sizes of the CCs at
each level of decomposition, and the distribution of node
degrees in the largest CC at each level of decomposition.

In addition to exposing the interconnection structure of the
input graph, this decomposition procedure allows us to examine
whether the graph has hierarchical properties. Although there
is no precise general notion of hierarchy, one way of think-
ing about it is in terms of classical hierarchical graphs, such
as rooted trees. A key characteristic of such graphs is that a
path from a node v in this graph, to any other node (which is
not a descendant of v) passes through the parent of v. Hence the
removal of nodes belonging to a higher tier would partition the
graph of the remaining nodes at tiers below. One can observe an
appropriate parallel of this characteristic in the Internet graph.
The transit nodes with no providers would form the “root” tier,
and other transit and stub nodes would successively be arranged
in the tiers below, based on the relationships among these ASes.
However, it is not clear if this structure is hierarchical in the
sense of the rooted trees, described above. It is worth noting
that breaking a graph into tiers does not necessarily shed any
light into whether it has an hierarchical structure, since tiering
does not impose the notion that nodes in a tier depend on the

4Another way of computing the Node Rank is to consider the stochastic ma-
trix derived from normalizing the columns of the adjacency matrix of the graph
under consideration. The Node Ranks of the graph nodes are then the values in
the principle eigenvector of the stochastic matrix [19].
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one above them for connectivity. Nodes within a tier could be
well connected within themselves, and perhaps also to nodes
in tiers above the one immediately on top of them. In fact, a
tiering could be induced in any graph, hierarchical or not. We
soon discuss this in more detail, and explore to what extent the
graphs we examine exhibit such hierarchical characteristics.

A. Related studies

There has been some previous work in characterizing the hi-
erarchy of the Internet graph. In [13], the authors observed that
ASes can be divided into four classes, with significant variation
of average degree between the classes. The authors propose a
tiering induced upon the AS graph, with the class of ASes with
the highest average degree at the top tier, followed by others
in descending order of the average degree. A similar tiering of
ASes has also been introduced in [12], [21], but using the logi-
cal relationships between the ASes. In [12], the authors create
a logical tiering based on the Customer-Provider relationship
between ASes, with a Provider AS assigned a tier higher than
its Customer. A similar approach has been suggested by [21],
using logical relationships and some notion of node intercon-
nectivity to distinguish adjacent tiers. A recent work [22] also
considers the hierarchical characteristic of the Internet graph,
and the degree to which the degree based generators capture
this property. Their metric of choice is the distribution of link-
values, where the value of a link can be roughly defined as the
number of node pairs whose shortest paths traverse this link.
The authors study the distribution of link-values for the Inter-
net router and AS level graphs, power-law graphs and some
canonical graphs. Examining the distribution of this metric for
different topologies and comparing it with the distribution of
the classical tree topology, the authors qualitatively compare
the relative degrees of hierarchy of graphs of different topolo-
gies. Although this metric serves a useful purpose in distin-
guishing among the different graphs, it falls short of answering
several questions. The distribution of link-values does not lend
any insight into the interconnection structure of the graph which
would have led to this distribution. Also, observing the distri-
bution of link-values does not answer some questions about the
nature of the hierarchy, whether it is balanced, how deep is it
etc. In other words, we are not able to “visualize” the structural
properties of these graphs.

IV. INPUT GRAPHS

We now introduce the set of graphs that we examine.
The Autonomous Systems topology has been created from
the BGP routing tables collected at the route-views server
(route-views.oregon-ix.net). The route-views data
set consists of routing tables exported from BGP routers of var-
ious Tier-1 ASes, and provides one of the most comprehensive
views of the current Internet. Since BGP is a path vector proto-
col, the routes advertised in these tables can be used to infer AS
adjacencies and thus the AS graph. One problem with this ap-
proach is that ASes selectively announce routes to other ASes
based on the contractual agreements between them. Hence, if
we have information only from some select BGP routers, we
may miss out on some advertised routes (and hence AS adja-
cencies) in the AS graph. In a recent work [8] the authors have
discussed this problem, and have extended the route-views data

set with BGP routing tables of a few other ISPs, and entries
from the Internet Routing Registry. They found the AS topol-
ogy constructed from this data set to have a significant number
of extra edges. Moreover, the degree distribution of this aug-
mented AS graph was found to not conform to a strict power-
law distribution. The authors also examined the nature of these
missing edges between the the two data sets, and found that
most were either peer-peer edges between lower-tier ASes, or
customer-provider edges. We applied our decomposition tech-
niques on AS graphs constructed from both the route-views and
the extended data set. We found (as will be discussed in detail
in Appendix A) that our results and observations hold across
these two different topologies. Moreover, a major source of
the extra edges in the extended topology (nearly 72% [8]) are
customer-provider links. These are from a multi-homed AS to
its providers, and may be fail-over links that are used only when
the primary link is not operational. This brings into question the
relevance of some of the missing edges between the two data
sets. Based on these points, we chose to adopt the route-views
data set as our AS topology of reference for this study. Finally,
even though the degree distribution of the AS graph constructed
from the route-views data set may not follow a strict power-law,
these graphs share important characteristics. Both have a highly
skewed degree distribution, and common generative principles
such as a notion of preferential connectivity. These character-
istics, as we will soon observe, play a key role in determining
the decomposition structure of these graphs. Thus, we argue,
power-law graphs are relevant models for comparison with the
AS graph.

We represent the AS level topology of the Internet by a graph,
G =< V,E >, where each v ∈ V denotes an AS and each
e ∈ E is an undirected inter-AS connection inferred from the
routing table data. We use the routing tables from May, 2004 to
construct the AS topology. Next, we consider two variants of
power-law based degree generators,

• PLRG (power law random graph) is a generator developed
in [2]. Given a target number of nodes N and a power-law
exponent β, PLRG first assigns degrees to all the nodes
drawn from this power-law distribution. It then randomly
matches degrees among all the nodes. This procedure may
produce graphs which are not connected, as well as graphs
that have have self-loops and duplicate links. It has been
shown in [2] that there exists a giant connected compo-
nent, for a large range of values of β. We hence search for
this giant connected component and remove all duplicate
links and self-loops.

• GLP (generalized linear preference) [7] extends the tech-
nique proposed in [5]. Starting with a small set of core
nodes, the technique incrementally constructs the graph.
At each step, one of two operations is probabilistically
chosen (i) adding a new node along with m links, or (ii)
adding m new links without a node. In both cases, the links
are connected to existing nodes with a probability that is
proportional to their degrees.

As a means of comparison with classical random graphs,
we also choose topologies generated by the Waxman genera-
tor [23]. The classical Erdos-Renyi random graph model [6]
assigns a uniform probability for creating a link between any
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AS Graph PLRG GLP Waxman
Number of Nodes 17611 17525 17611 17611
Number of Edges 38015 43377 27199 35222

TABLE II
CHARACTERISTICS OF THE INPUT GRAPHS

AS Graph PLRG GLP Waxman
Depth 9 14 6 37

TABLE III
DEPTH OF THE DECOMPOSITION

pair of nodes. The Waxman generator extends the classical
model by randomly assigning nodes to locations on a plane and
making the link creation probability a function of the Euclidean
distance between the nodes.

Table VII describes some specific properties of the studied
graphs. We use the Autonomous System graph inferred from
the Route-view server’s routing table data collected on May,
2004, as our reference graph. The topologies generated us-
ing other generative mechanisms aim to match the AS graph
in terms of numbers of nodes and edges. We generated 100
instances of these graphs with a different initial seed for each
instance; the table presents the average quantities computed
over all these instances. The empirical complementary cumu-
lative distribution of the node degrees of the AS graph follows
a power-law, with an exponent β = −1.125. The graphs gen-
erated by the PLRG and GLP generators closely (although, not
exactly) match this exponent.

V. RESULTS FROM THE DECOMPOSITION

Initially we choose a fixed value of α = 0.01 5 the fraction of
nodes to be removed from the CCs of the graph at each level of
decomposition. We later use different values of α, at different
levels of decomposition and briefly discuss the differences in
results in Appendix C.

Let us first consider the decomposition of the graphs with
power-law degree distributions, namely the AS graph, PLRG
and GLP graphs. We start by removing the top 1% highest
degree nodes and their edges from the input graph. We then
identify the CCs in these decomposed graphs, and repeat the

5Studies have reported that about 1% of all ASes in the Internet have no
providers. About 20 of these ASes have been found to form (almost) a clique,
which would be another (lower) estimate of the Tier-1 ASes.

AS Graph PLRG GLP Waxman
Level 1 8267 7651 11414 7
Level 2 1190 697 380 18
Level 3 749 492 238 23
Level 4 375 392 145 32
Level 5 273 326 73 39

TABLE IV
NUMBER OF CCS AT THE FIRST FIVE LEVELS OF THE DECOMPOSITION
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Fig. 3. CDF of the sizes of CCs of first 5 levels of decomposition

AS Graph PLRG GLP Waxman
Level 1 45% 50% 21% 99%
Level 2 76% 88% 73% 99%
Level 3 66% 90% 66% 99%
Level 4 80% 90% 54% 99%
Level 5 75% 90% 51% 99%

TABLE V
PERCENTAGE OF NODES IN THE LARGEST CC IN THE FIRST 5 LEVELS OF

DECOMPOSITION

procedure recursively. In all three classes of graphs, we observe
non-trivial-sized CCs until a level of recursion ranging from 6 -
14 as shown in Table III.

One observes in Table IV that the removal of the selected
nodes decomposes the graph into a large number of CCs.
The distribution of the sizes of these CCs is, however, highly
skewed, with a large fraction of CCs being trivial. This can also
be observed in Figure 3, which plots the CDF of this distribu-
tion, and indicates that between 80-90% of all CCs have either 1
or 2 nodes. Although we have not yet carried out statistical tests
to back this claim, visually these distributions seem similar, for
the AS, PLRG and GLP graphs. The disparity in the sizes of the
CCs is also reflected in Table VI which computes σCC , which
are extremely high across the three families of graphs. The next
common characteristic of the decomposition is the existence of
a “giant” CC at each level of decomposition. This giant CC, as
shown in Table V, contains 21-50% of nodes in the first level,
and 50-90% of nodes in subsequent levels. However, there is
also a substantial difference in the relative sizes of the giant CC
in the first level of decompositions of GLP graphs (21%), AS
Graphs (45%) and PLRG Graphs (50%). We consider the rea-
sons behind this difference imminently.

The decomposition structure of the power-law graphs is strik-
ingly different from that of the Waxman graph. Removing the
highest-degree nodes from that graph fails to decompose the
graph in any significant measure. As can be seen from Table IV,
a very small number of CCs are formed at each level of the de-
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AS Graph PLRG GLP Waxman
Level 1 86.62 104.25 32.63 8715.5
Level 2 174.57 309.71 126.54 4310.5
Level 3 145.85 308.50 92.82 4135.7
Level 4 165.62 322.41 100.34 2807.9
Level 5 144.90 312.61 66.58 2566.2

TABLE VI
STANDARD DEVIATION OF THE SIZE OF CCS IN THE FIRST 5 LEVELS OF

THE DECOMPOSITION

composition, with one CC comprising almost all nodes of the
graph, and a few trivially sized CCs. This is not surprising since
in a classical Erdos-Renyi random graph, most nodes have a de-
gree close to the mean degree of the graph, with the maximum
degree of the graph being orders of magnitude smaller than the
maximum degrees in a similar sized power-law graph. Hence,
the removal of the highest degree nodes has a very limited im-
pact on the structure of the graph. This difference also trans-
lates into a significantly larger depth of decomposition for the
Waxman graph.
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Fig. 4. A measure of the preferential connectivity in PLRG, GLP and AS
Graphs

We now explain why there is a significant difference in the
relative sizes of the giant CCs, in the first level of decomposi-
tion among the three graph families. We know that these graphs
have a very skewed degree distribution (80% - 90% of nodes
in the three graph families have degree ≤ 3, and 95% of node
have degrees ≤ 10) and the node-degrees of the highest-degrees
nodes are orders-of-magnitude higher than the average node de-
gree. We observe also that most nodes that are not in the gi-
ant CC belong to trivial sized connected CCs. One explanation
for this could be that nodes with small degrees comprise most
of the neighbors of nodes with the largest degrees. Removing
the highest-degree nodes could disconnect many of these low-
degree nodes, which would then form trivial-sized connected
CCs. In order to understand how this observation helps explain
the difference in the relative sizes of the giant CCs, we examine
Figure 4 which is a box-plot of the percentage of nodes with
degree ≤ 10, that are connected only to the removed highest-

degree nodes. We notice that GLP graphs have, in general, a
much higher fraction of small-degree nodes connected solely to
the highest degree nodes (median: 60%), as compared to the
AS Graph (median: 46%), which in turn has a higher percent-
age of such nodes than PLRG graphs (median: 41%). Removal
of the highest degree nodes in the GLP graphs thus disconnects
a greater percentage of nodes in the remaining graph, as com-
pared to PLRG and AS Graph. This directly leads to a smaller
size of the giant CC in the GLP graphs. On the other hand,
PLRG graphs, which have the smallest percentage of small-
degree nodes connected to the highest-degree nodes, have larger
giant CCs resulting from the decomposition. This difference in
structure can be explained by the differences in the connectivity
models of these graphs. PLRG graphs are based on a linear-
preference connectivity model, while it has been reported in [9]
that in the Internet, new ASes have a much stronger preference
to connect to large-degree ASes than predicted by the linear
preference model. GLP graphs have been designed explicitly
to incorporate this greater than linear preference for new ASes,
in order to connect with ASes with large degrees.

To further support our observation that connection prefer-
ences of lower-degree nodes determine the sizes of the gi-
ant CCs, we have also constructed power-law graphs with a
preference for high-degree nodes, to connect with the lowest-
degree nodes (as described in Appendix B). Since nearly all
the smallest-degree nodes in such graphs are connected to the
highest-degree nodes, the decomposition results in no giant
CCs at any level of decomposition.6

We now address the question of whether these graphs are hi-
erarchical. First, the graphs’ decompositions tend to be highly
imbalanced, with the size of the largest CC being orders of mag-
nitude larger than the average size of the CCs. Second, there are
many CCs at each level of the decomposition. Referring to our
previous discussion, a criterion we stipulated for a graph to be
hierarchical was that nodes (aside from those in the topmost
level) would depend on the nodes in the level above for paths
to the rest of the graph. This is true for the decomposition of
the graphs we have studied, since members of the (numerous)
small CCs are disconnected from the graph upon removal of
the nodes at a higher level. Also, these nodes form a substan-
tial fraction of nodes (50% to 79% at decomposition level 1).
Thus, based on this criterion, the resulting decomposition does
have hierarchical properties. However, the fact that there exist
numerous trivial-sized CCs is a result of the skewed degree dis-
tributions of these graphs and their preference for small-degree
nodes to connect with large-degree nodes. Moreover a signifi-
cant fraction of nodes at each decomposition level remain part
of a giant CC, with the relative size of this CC rising to as much
as 90% of all nodes at lower levels. Since the presence of this
giant CC implies that a large percentage of nodes remain con-
nected even upon the removal of the nodes at the level above, it
serves as a counterpoint to our earlier evidence that power-law

6This also helps illustrate why a substantial fraction of nodes in the graph
remain in one giant CC. In the PLRG, GLP and AS Graphs, because of a pref-
erence for nodes to connect with nodes of a higher degree, high degree nodes
themselves tend to connect with each other. In the power-law graph determin-
istically constructed with high degree nodes connecting with the lowest degree
nodes (described in Appendix B), there exist few edges between the high degree
nodes, resulting in a very low resiliency of these graphs.
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graphs have hierarchical properties.
To summarize, the decomposition structures of the AS

Graph, and GLP and PLRG power-law graphs seem to be quali-
tatively similar. All three graphs show a non trivial depth of de-
composition, a large number of trivially sized CCs at each level,
and a “giant” CC that comprises a significant percentage of the
nodes. We have explained the quantitative difference in the size
of the CCs as resulting from the differences in their connectiv-
ity models. In the next subsection, we focus on the similarities
in the decomposition behaviors of these families through statis-
tical tests.

A. Statistical tests comparing the decomposition of PLRG,
GLP and AS Graphs

We first consider the distribution of node degrees in the giant
CC at each level of decomposition. As can be observed from
Figure 5, the initial input graphs from the three sources show a
power-law distribution of degrees. However the distributions of
degrees in the largest CC of subsequent levels no longer follow
a power-law. In fact the tail seems to drop exponentially in the
case of all three families. As a first step toward ascertaining if
the degrees of the nodes in the giant CC come from the same
distribution for the three graph families, we perform a visual
statistical test. We plot the quantile-quantile plots (qq-plots)
of the degree distributions of nodes in the giant CC from the
first level of decomposition. A linear trend in the qq-plot for
all the three graphs, considered pairwise, indicates that degree
distributions come from at least the “same type” of distribution,
albeit with different parameters.
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Fig. 5. CCDF of node degrees in the original graph (Level 0), and nodes in the
giant CC of the first 3 levels of decomposition (Levels 1 - 3)

Given this visual evidence, we tried to identify candidate an-
alytical distributions that would describe our data. We observe
two distinct regions in the log-log plot of this data, a linear
body, and an exponentially dropping tail. Hence, we postulate
that instead of a single distribution, a hybrid of two different
distributions would better describe the entire dataset. As can-
didate distributions, we choose the Pareto for the body, and the
Exponential distribution for the tail. We observe an encourag-
ing visual fit of these distributions in their respective regions

in Figure 7. The next step is to test the match through a sta-
tistical goodness-of-fit test, for which purpose we employ the
Kolmorogov-Smirinov two-sample test. The null hypothesis for
this test is that two given input sample-sets are from the same
underlying distribution. The test statistic is defined as follows.
Let X1 and X2 denote the input sample-sets, and let F1, F2

be their respective Empirical Distribution functions. The test
statistic T is computed as:

T = maxx∈X1∪X2 |F1(x) − F2(x)|

We initially found that the null hypothesis was rejected at
the 95% confidence level, for some graph instances. Since this
could be an artifact of the large number of samples we have
available for the test, we redid the KS test with a randomly cho-
sen subset from the entire data set. We now find that the good-
ness of fit tests succeed for both the Pareto and the Exponential
distribution at a 95% confidence level. Based on these tests, we
believe that the distributions of node degrees in the largest CCs
come from the same family of distributions, for the PLRG, GLP
and AS graphs7.

We now consider if it is possible to compare the parameters
of these distributions. We first consider only the parameters of
the Pareto distribution, which is fitted to the body of the sam-
ple population. For each sample graph from the GLP or the
Pareto family, we first need to infer the parameter of the Pareto
distribution. To do this, we employ the least squares estimator
method, as described in [20]. In Figure 8, we box-plot the in-
ferred values of the parameter for the Pareto distribution fitted
to the degree of the nodes in the giant CC in the first level of
decomposition. For the AS-graph, the value for this parameter
is 1.40. From the box-plot we observe that though the inferred
parameters for the GLP and PLRG graphs are spread over a
range of values, they are fairly close to the inferred value for
the AS Graph. It is difficult to make a more precise quantitative
comparison between the inferred values of these parameters,
given that there is a small range of parameters for which the
goodness-of-fit tests do not reject the null hypothesis.
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Fig. 8. Box-plot of inferred parameters for the Pareto distribution over GLP
and PLRG graphs

7We include the qqplots and the plots of fitted distribution of the degree of
nodes in the giant CC, from the first three levels of decomposition in the ex-
tended version of this paper [14].
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Fig. 6. qq plot of degree of nodes in the giant CC, first level of decomposition
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Fig. 7. Fitting Pareto and Exponential distributions to body and tail of node degrees in giant CCs, first level of decomposition

To summarize, through the use of both visual and quantitative
goodness-of-fit tests, we observe the metrics used to quantify
the decomposition of a graph, are defined by same family of
distributions for the AS, PLRG and GLP graphs, indicating that
these graphs have a similar and closely related decomposition
structure.

VI. CONCLUSIONS AND FUTURE WORK

This work was motivated by the notion that, as defined by
their business relationships, there exists a structure in the man-
ner in which the Autonomous Systems in the Internet connect
with each other. More specifically, the notion that ASes are ar-
ranged in tiers, and a particular AS node connects with others,
usually through a provider AS in a preceding tier. In this work,
we use simple metrics, to identify ASes in a particular tier, and
using decomposition techniques, examine the inter-connection
structure between them. We then apply these techniques to
graphs generated from the PLRG and GLP family of genera-
tors. We observe, and validate through statistical tests, that the
AS graph, and graphs from the PLRG and GLP families have
similar decomposition structure. We also discuss the hierarchi-
cal properties, of these decomposition structures.

We observed in Section III, that if we arrange the nodes of
the AS graph into different tiers, based upon inferring logical
relationships between them, then a node of a lower degree (or
lower node stress) can be present in tier higher than a node
with a larger degree (or node stress). Hence these metrics may
not capture all the necessary semantics of how nodes in the AS
graph interconnect. An interesting issue to look into carefully is
how to map the semantics of the logical relationships between
ASes on to links in undirected graphs. With respect to our de-

composition techniques, this would help in choosing which and
how many nodes to extract at each level of decomposition.

Our decomposition techniques can be considered comple-
mentary to other metrics defined in previous works [7], [18],
[22] to compare Internet topology generators and the AS graph.
The approach in this work is new in the sense that it is the first to
look explicitly into the inter-connection structure of power-law
graphs. Applications of these techniques will include examin-
ing graphs generated by new schemes aimed at emulating the
AS Graphs, such as [11], [3], [4].
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APPENDIX

A. Comparing the Route-views and Extended AS topologies

We now compare the results of our decomposition tech-
niques on two versions of the AS graph topology. The first
(that we shall term Route-views) is derived solely from the
BGP routing tables of the route-views repository. The sec-
ond topology (termed Extended ) is constructed from connec-
tivity information attained from data sources in addition to the
route-views repository. As we can observe in Table VII,
the Extended topology has 40% more edges and about 2% more
nodes than the Route-views topology.

As discussed earlier, the route-views data set is based on BGP
tables collected from mostly Tier-1 ASes, which may not have
information about some links between lower-tier ASes. In order
to get around this problem, the extended data-set augments the
route-views data set with information from BGP routers of sev-
eral other lower-tier ASes, and using information from the In-
ternet Routing Registry. This additional information, especially
that from the routing registry provides us with more inter-AS

Route-views Extended
Level 1 41% 57%
Level 2 76% 82%
Level 3 79% 86%
Level 4 73% 88%
Level 5 76% 90%

TABLE VIII
PERCENTAGE OF NODES IN THE GIANT COMPONENT IN THE FIRST 5

LEVELS OF THE DECOMPOSITION

edges than obtained from the route-views data set alone. We
actually downloaded instances of the AS topology (from [1])
created using the augmented data set as part of the study done
by [8] dating from March, 2001.

Let us now apply our decomposition techniques to both these
graphs. We observe that the main difference in the decompo-
sition is that, across all levels of decomposition, the extended
topology has a larger relative size of the giant component as
compared to the route-views topology. For example, in the first
level of decomposition 57% of all nodes are in the giant compo-
nent in the Extended topology as compared to 41% in the Route-
views topology. Let us examine why this is the case. Firstly, as
pointed earlier, several extra edges in the Extended topology are
links between a multi-homed AS and its providers. It is possible
that an AS may spread such links across providers in different
tiers. Thus, as an example, upon removal of the highest 1% de-
gree nodes, a customer AS may lose some of its provider links,
but could continue to remain connected to the giant component
by virtue of also having links with lower-degree (or lower-tier)
ASes. In order to verify this notion, we looked into what per-
centage of nodes with degree ≤ 10 are connected solely to the
highest 1% degree nodes. In the case of the Route-views topol-
ogy, nearly 46% of such nodes were connected only the highest
degree nodes, and this falls to 39% of nodes in the Extended
topology. Also, another source of the extra edges are peer-peer
links between lower-tier ASes. The existence of such links fur-
ther increases the resiliency of the giant component across all
levels.

Finally, we examined the degree distribution of nodes in the
giant components at different levels of decomposition. We
found that, similar to the Route-views topology, the degree dis-
tribution in the Extended graph follows the Pareto in the body
and the Exponential distribution for the tail, as is shown in Fig-
ure 9. We have statistically verified this hypothesis by doing
goodness-of-fit tests for these distributions.

To summarize, after applying our decomposition techniques
on the augmented data set we observe the decomposition of the
Extended topology remains qualitatively and statistically simi-
lar to the Route-views topology despite some quantitative dif-
ference in the size of giant connected components at different
levels of decomposition.

B. Decomposition over different PLRG constructions

A question we consider is if the similarity of the decompo-
sition in the three family of graphs is simply a byproduct of
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Fig. 9. Fitting Pareto and Exponential distributions to body and tail of node
degrees in the giant CC at first 3 levels of decomposition in the Extended topol-
ogy

the fact that they have the same degree distribution? In order
to answer this question, we construct three different types of
PLRG graphs, each starting with the same node degree distribu-
tion, but with nodes interconnected differently. The first type of
graph is the standard PLRG graph in which nodes of a certain
degree are randomly matched with each other. In the second
type of graph (termed PLRG-ascending), we connect nodes in
the following way. We start with the highest-degree node, and
enforce the policy that this node give priority to connect with
the lowest-degree nodes, until its degree is exhausted. We then
move on to the next highest-degree node. In this construction,
nodes with high degrees are sparsely connected with each other.
The third type of graph (termed PLRG-descending) is con-
structed in the reverse manner as the former - a higher priority
is given for nodes with high degrees to connect with each other.
Upon applying our decomposition technique to these graphs,
we observe that both PLRG-ascending and PLRG-descending
show a very different decomposition structure than the standard
PLRG graph. At the first level of decomposition itself, these
graphs break down into many connected components, with no
existence of a giant component. This simple example illustrates
that replicating the degree distribution of a graph is not suffi-
cient to reproduce its decomposition characteristics.

PLRG PLRG-ascending PLRG-descending
Level 0 50% 1% 22%
Level 1 88% 95% 92%
Level 2 90% 97% 95%
Level 3 91% 97% 96%
Level 4 90% 98% 95%

TABLE IX
PERCENTAGE OF NODES IN THE LARGEST CONNECTED COMPONENT IN

THE FIRST FIVE LEVELS OF DECOMPOSITION

C. Decomposition with different values of α

Until now in our decomposition, we have used a fixed value
of α = 0.01, as the fraction of nodes to be removed in each
stage of the decomposition. In Table X we present results from
carrying out the decomposition for different values of α. Be-
low, we present only the figures for the relative size of the gi-
ant component in the first level of decomposition, we have ob-
served similar trends for lower levels. We note that, except for
the Waxman graph, the size of the giant component decreases
with an increase in α, and after a certain point, there no longer
exists a “giant” component.

α AS Graph PLRG GLP Waxman
0.005 59% 57% 33% 99%
0.010 45% 50% 21% 99%
0.020 14% 38% 1% 98%
0.030 3% 29% 1% 97%
0.040 1% 17% 1% 96%
0.050 1% 6% 1% 94%

TABLE X
PERCENTAGE OF NODES IN THE LARGEST CONNECTED COMPONENT IN

DECOMPOSITION LEVEL 1 WITH VARYING α
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