
An Efficient Algorithm for OSPF Subnet Aggregation

Aman Shaikh
Computer Engineering
University of California
Santa Cruz, CA 95064
aman@soe.ucsc.edu

Dongmei Wang, Guangzhi Li, Jennifer Yates, Charles Kalmanek
AT&T Labs (Research)

180, Park Avenue
Florham Park, NJ 07932

fmei,gli,jyates,crkg@research.att.com

Abstract

Multiple addresses within an OSPF area can be aggre-
gated and advertised together to other areas. This pro-
cess is known as address aggregation and is used to reduce
router computational overheads and memory requirements
and to reduce the network bandwidth consumed by OSPF
messages. The downside of address aggregation is that
it leads to information loss and consequently sub-optimal
(non-shortest path) routing of data packets. The result-
ing difference (path selection error) between the length of
the actual forwarding path and the shortest path varies be-
tween different sources and destinations. This paper proves
that the path selection error from any source to any des-
tination can be bounded using only parameters describing
the destination area. Based on this, the paper presents an
efficient algorithm that generates the minimum number of
aggregates subject to a maximum allowed path selection
error. A major operational benefit of our algorithm is that
network administrators can select aggregates for an area
based solely on the topology of the area without worrying
about remaining areas of the OSPF network. The other
benefit is that the algorithm enables trade-offs between the
number of aggregates and the bound on the path selec-
tion error. The paper also evaluates the algorithm’s per-
formance on random topologies. Our results show that in
some cases, the algorithm is capable of reducing the num-
ber of aggregates by as much as 50% with only a relatively
small introduction of maximum path selection error.

Keywords: OSPF, routing protocol, router configuration
management, address aggregation

1. Introduction

Open Shortest Path First (OSPF) [2, 3] is a widely used
intra-domain routing protocol in IP, MPLS and optical net-
works. OSPF is conceptually a link-state routing protocol.
In link-state routing protocols, every router acquires a com-

plete view of the network topology. Each link has an asso-
ciated weight that is administratively assigned. Using the
weighted topology, each router computes a shortest path
tree with itself as the root [1], and applies the results to build
its forwarding table. This assures that packets are forwarded
along the shortest paths defined by the link weights to their
destinations [2].

For scalability, OSPF allows the network to be divided
into areas to define a two-level hierarchy. Area 0, known as
the backbone area, resides at the top level of the hierarchy
and provides connectivity to the non-backbone (non-zero)
areas. Figure 1, which is based on a similar figure presented
in [4], shows an OSPF network with four areas. In OSPF,
each link and subnet are assigned to exactly one area. The
routers that have links to multiple areas are called border
routers. For example, routers A, B, C, D and E are bor-
der routers in Figure 1. Every router maintains a separate
copy of the topology graph for each area it is connected to.
In general, a router does not learn the entire topology of
remote areas (i.e., the areas in which the router is not di-
rectly connected with), but instead learns the weight of the
shortest paths from one or more border routers to each sub-
net in the remote areas. For example, router A in Figure 1
would learn the entire topology of its attached areas 0 and
3. However, it would only learn distances of various subnets
of area 1 from border routers B and C, and of area 2 from
border routersD andE. This summarization of information
outside an area reduces the CPU and memory consumption
at routers as well as the network bandwidth consumed by
OSPF messages. This makes the protocol more scalable.

OSPF allows border routers to further aggregate a set of
subnet addresses into a less specific prefix and advertise a
distance to this aggregate prefix instead of distances to the
individual subnets. This is referred to as address aggrega-
tion. Typically, the distance assigned to an aggregate is the
maximum of the distance to any subnet covered by the ag-
gregate [2]. Aggregation of subnet addresses into less spe-
cific prefixes is controlled by configuration on the border
routers. As an example, consider area 1 in Figure 1. Sup-

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

100

100

10.1.2.0/24

10.1.1.0/24
F

100

10.10.6.1/24 10.10.7.1/2410.10.5.1/24

100

10

E

D

CB

A

10.10.4.1/24

50
100

100

1600

1000

50

Area 2Area 3

Area 1

1000

10.1.3.0/24

1600

Area 0

20

10

10.10.3.1/24 10.10.2.1/24

10.2.1.0/24

2000

1000

1600

2000

1000

10.2.2.0/24

Figure 1. An example OSPF network with four areas. All routers and subnets shown are assumed to
be owned by the service provider, and not by the external customers.

pose a single aggregate ������������ is used to represent all
of the subnets in the area. In that case, router B will adver-
tise a distance of max(10, 110, 120) = 120 to ������������,
and router C will advertise a distance of max(20, 30, 130)
= 130 to ������������.

Address aggregation further reduces resource consump-
tion at the routers outside a given area. However, address
aggregation generally leads to information loss, which may
result in sub-optimal forwarding as the selected path may
not be the shortest path to the destination. When a sin-
gle aggregate ������������ is used for representing all sub-
nets in area 1, router A routes all packets via border router
B to all destinations in area 1, while routers D and E
route all packets via border router C for destinations in
area 1. These routing decisions are clearly not optimal
(minimum distance). If the routing information in area 1
had not been aggregated, router A, for example, would
have routed packets via B if destined for ������������
and ������������, and via C if destined for ������������,
������������, ������������ and ������������. Thus, the
aggregation of subnet addresses leads to cases where traffic
is not forwarded along the shortest path.

For a given source-destination pair, we define the differ-
ence between the length of the selected path and the length
of the shortest path to be the path selection error. It is of
interest to network architects and administrators to know
the path selection error introduced by aggregation, and to
minimize it. Rastogi et al. [4] proposed an algorithm for
selecting a given number of aggregates such that the cumu-
lative error in path selection for all source-destination pairs

is minimized. However, this algorithm requires the knowl-
edge of the entire network topology. In addition, the algo-
rithm computes the aggregates for all areas together, and
needs to recompute all the aggregates even if a change is
made to a single area. This makes it difficult to use this
algorithm for address aggregation in large OSPF networks
which tend to undergo constant changes.

The main contribution of this paper is a theorem that
proves that the path selection error from any source to any
destination can be bounded by a value that depends only on
the parameters describing the destination area. More specif-
ically, the theorem proves that the bound on the path selec-
tion error can be determined based on three components:
the set of border routers in the area, the set of subnets and
their distances from the border routers, and the set of aggre-
gates and their distances from the border routers. Using the
theorem as a basis, we propose an algorithm that generates
a set of aggregates for a given area such that the number of
aggregates is minimized subject to a maximum acceptable
path selection error. Since the algorithm uses only infor-
mation about the area of interest, a change to the topology
or weights of the area requires a recalculation of aggregates
for that area only; not all the areas. For large ISP and en-
terprise networks, this offers a tremendous advantage over
Rastogi’s algorithm in terms of network scalability, plan-
ning and operations. Another advantage of the algorithm is
that it enables a trade-off between the number of aggregates
and the bound on the path selection error. The algorithm
also opens up the possibility of an on-line implementation
where a central server [5] or routers themselves can run the

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

Table 1. Notation used in this paper
Symbol Description

s� t Subnets
Ds�s� t� Shortest path distance from source s to subnet t
X� Y Aggregates

Da�s� t�X� Actual distance from s to t on path selected due to X
E�s� t�X� Error in path selection due to the aggregateX , which is Da�s� t�X��Ds�s� t�

K Bound on maximum acceptable path selection error
XF set of subnets covered by the aggregateX in the area
Xs Subset of XF

F �Ri� X� Longest distance from Ri to subnets covered by X , which is maxs�XF Ds�Ri� s�
B Number of border routers (R�� R� � � � � RB) in an area
N Number of subnets (t�� t�� � � � � tN) in an area

Dmin Minimum distance between all (border router, subnet) pairs, which is min��i�B���j�NDs�Ri� tj�
Dmax Maximum distance between all (border router, subnet) pairs, which is max��i�B���j�NDs�Ri� tj�
Dr Distance range, which is Dmax �Dmin

A�M Prefix for a subnet or an aggregate. A is the IP address and M is the mask length.

algorithm and adjust aggregates dynamically as the network
topology evolves.

This paper evaluates the performance of the algorithm
on randomly generated topologies. Our results show that in
some cases, the algorithm is capable of reducing the number
of aggregates by as much as 50% with the introduction of
only a small path selection error.

The paper is organized as follows: Section 2 formulates
the problem. In section 3, we prove the theorem for bound-
ing the path selection error. Section 4 describes the algo-
rithm for determining the set of aggregates. Finally, sec-
tion 5 evaluates the performance of the algorithm.

2. Problem Formulation

In this section, we formulate the problem underlying our
aggregate selection algorithm. We start with the definition
of symbols used throughout the paper (see Table 1). We use
s and t to denote subnets of an OSPF area, and X and Y to
denote the aggregates. Whenever required, we represent ad-
dresses of subnets and aggregates as A�M where A repre-
sents the IP address, andM represents the mask length. Let
Ds�s� t� be the shortest path length from a source s to a des-
tination t. We denote the metric assigned to an aggregateX
by a border router R as F �R�X�. Furthermore, we denote
the length of the selected path from s to t when aggregateX
is used to represent t as Da�s� t�X�. Since Ds�s� t� is the
length of the shortest path between s and t, Da�s� t�X� �
Ds�s� t�. We denote the path selection error from s to t due
to X as E�s� t�X�. Since the path selection error is equal
to the difference between the selected path length and the
shortest path length, E�s� t�X� � Da�s� t�X��Ds�s� t�.

We formulate the aggregate selection problem as fol-

lows: given an acceptable path selection error, K, a set S
of N subnets, a set of B border routers and a B x N matrix
representing distances between each (border router, subnet)
pair, the objective is to identify a set of aggregates such that
the number of aggregates is minimized and the path selec-
tion error E�s� t�X� from a source s to any subnet t � S is
bounded by K, i.e., E�s� t�X� � K, where t is covered by
the aggregate X .

3. Theorem on Bounding the Path Selection Er-
ror

In this section, we prove that an upper bound on the path
selection error can be calculated using only local topology
information. We start with an example to gain some intu-
ition. Suppose we have two border routers R� and R�, and
a subnet t in an area. We assume that s is a source out-
side the area. Figure 2 represents the shortest path from s
to t viaR� and R� as strings with length proportional to the
distance of the paths from s. As is evident from Figure 2(a),
s will pick the path via R� to reach t when no aggregation
is used. Now suppose we use an aggregateX to represent t.
In this case, whether s selects the path viaR� orR� to reach
t, depends on the advertised distances from R� and R� to
X . Since it is likely that both R� and R� will advertise a
distance to X that is no less than the advertised distance
to t [2], the paths to X are shown as stretched strings in
Figure 2(b) and Figure 2(c). If both strings stretch by the
same amount as shown in Figure 2(b), s will still pick R�

to reach t as shown. In this case, the path selection error
is zero. In fact, even if the stretch amount for R� is larger
than that for R�, s will still choose R� so long as the dif-
ference between the stretch amounts for two border routers

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

s

R2

t

s

t

X

R1

(a) (b) (c)
X

tt t

sss

R2R2R1

s

R1

t

X X

Figure 2. Example showing how path selec-
tion error can be bounded with parameters
local to the destination area.

is less than the difference in the lengths of two strings in
Figure 2(a). Only when the difference between the stretch
amounts increases beyond that will s pick R� to reach t,
and the error in path selection is introduced. Note that the
path selection error, which is the difference between the two
strings in Figure 2(a), cannot be more than the difference in
the stretch amounts of the two strings. In other words, the
error in path selection is always bounded by the difference
in stretch amounts. Since the stretch amounts of the strings
can be determined using parameters of the subnet t’s area
only, the path selection error can be bounded using the des-
tination area’s parameters only. Theorem 1 formalizes this
observation.

Theorem 1 Let us assume that the given area A has B

border routers �R�� � � � � RB� and X is one of the aggre-
gates used to cover one or more subnets in area A. Let
F �Ri� X� be the metric assigned to aggregateX by Ri. Let
t be one of the subnets in A covered by X . Furthermore,
let s be a source outside area A. The path selection er-
ror from source s to destination t covered by X is bounded
by E�s� t�X� � max��i�j�B j�Ds�Ri� t� � F �Ri� X�� �
�Ds�Rj � t�� F �Rj � X��j.

Proof: We assume that the shortest path length from s to
t via border router Ri is di�� � i � B� where

di � Ds�s�Ri� �Ds�Ri� t�

Furthermore, we assume that the advertised path length
from s to t via Ri due to aggregate X is ci�� � i � B�
where

ci � Ds�s�Ri� � F �Ri� X�

Let dk represent the shortest path distance from s to t.
However, since t is covered by the aggregate X , the se-

lected path would be the one with the shortest advertised
path length which we denote by cj . Thus, cj � ck, which is

Ds�s�Rj� � F �Rj � X� � Ds�s�Rk� � F �Rk� X�

Ds�s�Rj��Ds�s�Rk� � F �Rk� X�� F �Rj � X�

Since the shortest path from s to t is the one passing
through router Rk with a distance of dk, and the selected
path is the one passing through router Rj with a distance of
dj , the path selection error E�s� t�X� is:

� dj � dk

� Ds�s�Rj� �Ds�Rj � t��Ds�s�Rk��Ds�Rk� t�

� Ds�s�Rj��Ds�s�Rk� �Ds�Rj � t��Ds�Rk� t�

� F �Rk � X�� F �Rj � X� �Ds�Rj � t��Ds�Rk� t�

� �F �Rk � X��Ds�Rk� t���

�F �Rj � X��Ds�Rj � t��

� max
��i�j�B

j�Ds�Ri� t�� F �Ri� X���

�Ds�Rj � t�� F �Rj � X��j �

Note that the theorem holds true for an arbitrary cost as-
signment function F �R�X� as long as all the border routers
use the same function. We use this theorem as a basis to
design our aggregation algorithm.

4. The Aggregation Algorithm

In this section, we propose an algorithm that determines
a set of aggregates that minimizes the number of aggregates
required to cover all of the subnets within an area subject
to a given bound on path selection error. The algorithm
consists of two main steps:

1. Determine a set of candidate aggregates from which
aggregates to be advertised by border routers can be
selected (see section 4.1).

2. Select a set of aggregates out of the candidate aggre-
gates subject to the error bound (see section 4.2).

Before we describe the algorithm, let us state our as-
sumptions:

1. Subnet addresses in one area do not overlap with those
in other areas. This is a reasonable assumption, as net-
work architects typically assign addresses in this man-
ner.

2. The candidate aggregates in one area do not overlap
with subnet addresses or candidate aggregates in other
areas. The problem of assigning addresses to areas
such that there is no overlap across areas is an orthog-
onal problem, and is beyond the scope of this paper.

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

10.10.4.0/22

10.10.0.0/21

10.10.5.1/24

10.10.2.0/23

10.10.2.1/2410.10.3.1/24

10.10.4.1/2410.10.6.1/2410.10.7.1/24

10.10.4.0/2310.10.6.0/23

Figure 3. Aggregate Tree T corresponding to area 1 subnets in Figure 1.

4.1. Algorithm for Determining Candidate Aggre-
gates

Procedure 1 AggrTree�N� fAi�Mi j � � i � Ng�

r � �
for i � �� � � � � N do

if r � � then
create node Ai�Mi and r � Ai�Mi

else
X�m� r
Y�k � Compare�X�m�Ai�Mi�
if k � m then
AddChild�X�m�Ai�Mi�

else
create nodes Y�k and Ai�Mi

create an edge between Y�k and X�m
create an edge between Y�k and Ai�Mi

r � Y�k
end if

end if
end for
return r

Procedure 2 Compare�A��M�� A��M��

Y � A��A�, where � is the bit ’and’ operator
M � min�M��M��
Let k denote the maximum number of equal bits of A�

and A� from left to right among the first M bits
return Y�k

To determine the set of candidate aggregates, we use the
concept of an aggregate tree proposed by Rastogi et al. [4].
An aggregate tree is a binary tree in which each node rep-
resents an IP prefix, A�M . Each edge of the tree represents
containment relationship between prefixes, i.e., the prefix
of the parent node always covers all of the addresses repre-
sented by the prefixes of its two children. We build the ag-
gregate tree such that the subnet addresses of an area form

the leaves of the tree. Each internal node of the tree repre-
sents a candidate aggregate that can be used for representing
all of the subnets in its subtree. Figure 3 shows the aggre-
gate tree for the subnets of area 1 in Figure 1.

We now describe the algorithm for building an aggregate
tree. To the best of our knowledge, there is no previously
published algorithm for building an aggregate tree. Our al-
gorithm starts with an empty tree, and adds one subnet to
the tree at a time. At any given time, the partially con-
structed tree contains candidate aggregates that covers all
subnets added to the tree up to that point. The first subnet
added to the tree becomes its root. To add each subsequent
subnet to the tree, the algorithm starts at the root of the tree.
If the root covers the new subnet, the algorithm examines
the children of the root. If one of the children covers the
subnet, the algorithm further examines the children of this
node, and so on until it locates a node P in the tree whose
children do not cover the new subnet. Once such a node is
located, the algorithm performs a longest prefix match of
the subnet with the two children of P . We denote the se-
lected child as H . The algorithm removes the edge between
H and its parent, P , and creates two new nodes. The first
node represents the new subnet address which we denote as
H�. The other node represents the most specific prefix that
contains both H and H� which we denote as H�. H� is
then inserted as a child of P , while H and H� become the
children of H�.

Procedure 1 presents the pseudo-code of AggrTree
which implements the above mentioned tree construction
algorithm. The procedure takes a set of subnet addresses
fAi�Mi j � � i � Ng, and constructs the aggregate
tree T . The procedure uses r to represent the root of
T . The first prefix, A��M�, initializes the tree by becom-
ing the root. For each subsequent prefix, the procedure
tries to determine whether the prefix should be added to
the subtree rooted at root r or whether a new root needs
to be created. The function Compare�X�m�Ai�Mi� de-
termines the most specific prefix Y�k which covers both
X�m and Ai�Mi. Procedure 2 defines the pseudo-code of
Compare�X�m�Ai�Mi�. Coming back to AggrTree, if k
is equal to m, root r covers Ai�Mi, and the procedure calls

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

AddChild�X�m�Ai�Mi� to add Ai�Mi at an appropriate
place in the subtree rooted at r. Otherwise, Y�k is made
the new root of the tree, and X�m and Ai�Mi are made
children of this newly created root.

Procedure 3 AddChild�X�m�Ai�Mi�

H��h� and H��h� are two children of X�m
Y��k� � Compare�H��h�� Ai�Mi�
Y��k� � Compare�H��h�� Ai�Mi�
if k� � k� then

if k� � h� then
AddChild�H��h�� Ai�Mi�

else
create two nodes Y��k� and Ai�Mi,
delete the edge between X�m and H��h�
create an edge between X�m and Y��k�
create an edge between Y��k� and H��h�
create an edge between Y��k� and Ai�Mi

end if
end if
if k� � k� then

if k� � h� then
AddChild�H��h�� Ai�Mi�

else
create two nodes, Y��k� and Ai�Mi

delete the edge between X�m and H��h�
create an edge between X�m and Y��k�
create an edge between Y��k� and H��h�
create an edge between Y��k� and Ai�Mi

end if
end if
return X�m

Procedure 3 gives the pseudo-code of
AddChild�X�m�Ai�Mi� which calls itself recursively to
add the new subnet Ai�Mi as a node in the subtree rooted
at X�m. Suppose that H��h� and H��h� are two children
of X�m, and T� and T� are the subtrees rooted at these
children respectively. The procedure first tries to determine
which Ti the subnet Ai�Mi should go in. In order to do
so, the procedure calls Compare to determine the most
specific prefixes Y��k� and Y��k� that covers Ai�Mi and
the two children H��h� and H��h� respectively. The
procedure then picks that subtree Ti for which Yi�ki turns
out to be more specific. Once the procedure has picked the
appropriate subtree, there are two possible cases regarding
how Ai�Mi is added to the subtree. In the first case, the
root of Ti (Hi�hi) covers Ai�Mi. Under this case, the
procedure calls itself with the appropriate child (Hi�hi) as
the root. In the other case, Yi�ki is made the new root of
Ti, and Hi�hi and Ai�Mi become two children of Yi�ki.

4.2. Aggregate Selection Algorithm

The aggregate selection algorithm takes an aggregate
tree and the acceptable path selection error bound (K) as
the input and selects the minimum number of aggregates
from the tree such that all of the subnets (i.e., leaves of the
tree) are covered and the error bound (K) is satisfied. For
efficiency, the algorithm uses a binary search on the number
of aggregates,Na. During the search, for each value of Na,
the algorithm searches the tree to determine whether there
is a set of Na (or � Na) aggregates that satisfies the error
bound. The algorithm terminates when the lowest value of
Na is identified.

For a given value of Na, the algorithm traverses the ag-
gregate tree recursively. It begins at the root of the aggre-
gate tree, with the aim of selecting up to Na aggregates out
of the tree. The algorithm has to consider two options. The
first option is to select the root as a candidate aggregate,
and try to select up to Na � � aggregates from the two sub-
trees rooted at the children of the root. The other option
is to exclude the root from consideration, and select up to
Na aggregates from the two subtrees. Let us denote by Na

�

the number of aggregates that the algorithm has to select
from the two subtrees. The algorithm recursively looks for
up to Nal �� Na

�� aggregates from the left subtree, and up
to Na

� �Nal aggregates from the right subtree. The value
of Nal is varied from 0 through to Na

�. For each selected
candidate aggregate set, the algorithm calculates the error
bound, and compares it with K. The algorithm terminates
either when it has identified up to Na aggregates that sat-
isfy K or when it has failed to identify Na aggregates by
exhausting all possibilities. The algorithm is implemented
as a dynamic program so that it solves each subtree prob-
lem only once and saves the results to avoid redundant re-
computations.

Procedure FindAggr�X�Y�Na�K�A�X�� (see Proce-
dure 4 for the pseudo-code) implements the algorithm de-
scribed above for a given value of Na. The procedure tries
to determine up to Na aggregates from the (sub)tree rooted
at the aggregate X . Y denotes the most specific aggregate
among those selected so far that covers X . Y can be �,
and if Y is �, the procedure has to make sure that the se-
lected aggregates cover all of the subnets (i.e., leaves) of
the subtree. On the other hand, if Y is not �, the selected
aggregates do not have to cover all the subnets since Y rep-
resents the aggregate selected higher up the tree, and can
cover all the subnets that are not covered by the aggregates
selected here. If the aggregates satisfying K are found, the
procedure stores them in the set A�X�, and returns true;
otherwise it returns false with A�X� set to �.

Let us describe FindAggr in more detail. It starts with
a simple case of Na equal to 0. In this case, the procedure
returns true with A�X� set to �. If Na � �, the behavior

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

of the procedure depends on whether there is no selected
aggregate Y covering X , i.e., Y is � or there is a selected
aggregate Y covering X , i.e., Y �� �. Let us focus on the
first case here. For this case, if X is a leaf of the tree, it
represents a subnet address. Therefore, X must be selected
as an aggregate to ensure that the subnet is covered. Since
the aggregation error resulting from selecting X is zero, the
procedure sets A�X� equal to X , and returns true. If X is
not a leaf, then it must have two children which we denote
by U and V . At this stage, the procedure considers two
options. The first option is to include X in the set of aggre-
gates and try to determine the remainingNa� � aggregates
from the subtrees rooted at the children of X . The other
option is to exclude X , and try to determine all Na aggre-
gates from the subtrees rooted at the children of X . With
both the options, the procedure calls itself recursively to se-
lect the remaining aggregates from the subtrees rooted at U
and V . ProcedureFindAgg callsMaxErT �X�XF �K� to
determine whether using aggregate X for representing sub-
nets in set XF satisfies the error bound K or not. Notation
XF here represents all the subnets covered by aggregate X
in the subtree, and XF � A�U� � A�V � represents all the
subnets covered byX minus those covered by aggregates in
A�U� andA�V �. The other case where Y is not � is handled
in a similar fashion.

Procedure 5 presents the pseudo-code of
MaxErT �Y� Ys�K�. As mentioned earlier, the pro-
cedure returns true if error bound calculated according to
Theorem 1 for aggregate Y and subnets in Ys is less than
or equal to error bound K; otherwise, it returns false.

4.3. Run-time Analysis of the Algorithm

Having described the algorithm, let us present run-time
analysis of the algorithm. First we consider the tree con-
struction algorithm described in section 4.1. Procedure
AddChild used for adding a subnet to the aggregate tree
can be called O�h� times where h is the height of the tree
built so far. An aggregate tree with N leaves has height
of O�logN�. Therefore, procedure AggrTree for con-
structing the aggregate tree takes O�N logN� time. Next
we consider the aggregate selection algorithm described
in section 4.2. Since FindAggr�X�Y�Na�K�A� is im-
plemented as a dynamic program, it is invoked only once
for each distinct value of �X�Y�Na� triplet. The num-
ber of distinct �X�Y�Na� triplets is ��N � ���N � ���N�
which is O�N��. Thus, FindAggr can be invoked at
most O�N�� times. The run-time for each invokation of
FindAggr depends on three factors: (1) the time taken for
the A�U� � A�V � operation which can be O�N�� in the
worst-case; (2) the time taken for the XF �A�U�� A�V �
operation which is O�N�� in the worst-case; and (3) the
time taken by MaxErT which can be O�NB�� in the

Procedure 4 FindAggr�X�Y�Na�K�A�X��

if Na � �, A�X�� �, return true
if Na � � && Y � � then

if X is a leaf, A�X�� X , return true
if Na � � then

is MaxErT �X�XF �K� true ? fA�X� � X , re-
turn trueg : fA�X�� �, return falseg

else if Na � � && X has two children U and V then
do not select X
for m � �� ���� Na � � do

if FindAggr�U� ��m�K�A�U��, and
FindAggr�V� �� Na � m�K�A�V �� both
are true, then A�X�� A�U��A�V �, return true

end for
select X
for m � �� ���� Na � � do
XF = set of subnets covered by X
if FindAggr�U�X�m�K�A�U��,
FindAggr�V�X�Na � � � m�K�A�V ��,
and MaxErT �X� �XF � A�U� � A�V ���K�
all are true, then A�X� � X � A�U� � A�V �,
return true

end for
A�X�� �, return false

end if
end if
if Na � � && Y �� � then

if X is a leaf A�X� � X , return true
if X is not a leaf then
X has two children U and V
do not select X
for m � �� ���� Na do
XF = set of subnets covered by X
if FindAggr�U� Y�m�K�A�U��,
FindAggr�V� Y�Na � m�K�A�V ��, and
MaxErT �Y� �XF � A�U� � A�V ���K� are
true, then A�X�� A�U� �A�V �, return true

end for
select X
for m � �� ���� Na � � do
XF = set of subnets covered by X
if FindAggr�U�X�m�K�A�U��,
FindAggr�V�X�Na � � � m�K�A�V ��,
and MaxErT �X�XF � A�U� � A�V ��K� all
are true, then A�X�� X �A�U��A�V �, return
true

end for
end if

end if
A�X�� �, return false

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

Procedure 5 MaxErT �Y� Ys�K�

for i � �� ���� jYsj do
if max��u�v�B j�Ds�Ru� yi�� � F �Ru� Y �� �
�Ds�Rv � yi��� F �Rv � Y ��j � K then

return false
end if

end for
return true

worst-case. Since each of these three operations are invoked
in a for-loop which runs O�N� times, each invokation of
FindAggr can take O�N� � N�B�� time. Therefore, the
overall run-time complexity of FindAggr can be bounded
as O�N� �N�B��.

5. Performance Evaluation

This section evaluates the performance of our aggrega-
tion algorithm. We start by characterizing how effective the
algorithm is in reducing the number of aggregates as the er-
ror bound is increased. The effectiveness of the algorithm
in this regard depends on three factors: (1) the number of
subnets in an area and the address structure of the subnets,
(2) the number of border routers in the area, and (3) the dis-
tances of border routers to the subnets. Our evaluation char-
acterizes the effect of all of these factors on the performace
of the algorithm. After that, we characterize the run-time
of the algorithm and show how it scales as the number of
subnets increases.

For performance evaluation, we have implemented the
algorithm in C++. We use a single OSPF area as an input
to the algorithm. In the absence of any realistic data to use
for OSPF areas, we synthetically generated the required pa-
rameters of an area, namely, a set of border routers, a set
of subnets and a B x N distance matrix representing dis-
tances between each (border router, subnet) pair. We ran-
domly selected both the subnet addresses and each element
of the distance matrix. Each subnet was assigned an address
block with a randomly generated mask length between 24
and 30. The addresses themselves were assigned as com-
pactly as possible. For example, the address assignment
for four subnets looks like this: 10.0.0.0/26, 10.0.0.64/28,
10.0.0.96/27 and 10.0.0.128/25. Distances between each
(border router, subnet) pair was randomly selected between
Dmin and Dmax. Values of Dmin and Dmax themselves
are not important for our purposes; what matters is the dif-
ference between these values which we denote as Dr.

The first set of results show how the number of aggre-
gates decreases as the error bound is increased for a given
value of (N , B, Dr) triplet. We collected ten samples for
each value of (N , B, Dr) with different seed values be-
ing used for each sample. Our results present the mean of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o_

of
_a

gg
rs

 /
N

o_
su

bn
et

s

Error_bound / Dist_range

N = 40
N = 60
N = 80

N = 100
N = 120

Figure 4. Number of aggregates versus error
bound for varying number of subnets (B = 2
and Dr = 100).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o_

of
_a

gg
rs

 /
N

o_
su

bn
et

s

Error_bound / Dist_range

B = 2
B = 3
B = 4
B = 5

Figure 5. Number of aggregates versus error
bound for varying number of border routers
(N = 80 and Dr = 100).

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o_

of
_a

gg
rs

 /
N

o_
su

bn
et

s

Error_bound / Dist_range

Dr = 60
Dr = 80

Dr = 100
Dr = 120
Dr = 140

Figure 6. Number of aggregates versus error
bound for varying Dr (N = 80 and B = 2).

these ten samples. In the plots that follow we normalize the
number of aggregates by dividing it by the number of sub-
nets, and normalize the error bound by dividing it with the
distance range, Dr. Figures 4, 5 and 6 plot the aggrega-
tion ratio versus error bound ratio for different numbers of
subnets, different numbers of border routers, and different
values of the distance range respectively.

Figure 4 demonstrates that the algorithm is effective in
reducing the number of aggregates since it is able to re-
duce the number of aggregates by 50% for an introduction
of 25% in the error bound ratio. This shows that signifi-
cant aggregation can be achieved while introducing only a
relatively small path selection error. The figure also shows
that the number of subnets (N) has no impact on the char-
acteristic of the error bound ratio versus aggregation error
curve.

Figure 5 demonstrates that the performance of the ag-
gregation algorithm is sensitive to the number of border
routers. As we increase the number of border routers,
the aggregation algorithm becomes less effective. From
Theorem 1, we see that the error bound is given by
E�s� t�X� � max��i�j�B j�Ds�Ri� t� � F �Ri� X�� �
�Ds�Rj � t� � F �Rj � X��j. Thus, the bound is likely to in-
crease as the number of border routers increases especially
for scenarios where the distances are randomly selected.
This figure shows that our algrothm is more effective at re-
ducing the number of aggregates when the number of border
routers is small.

Figure 6 shows the impact of distance range (Dr) on the
characteristic of the error bound ratio versus aggregation er-

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

Number of subnets

K = 0
K = 20
K = 40
K = 60
K = 80

K = 100

Figure 7. Run-time of aggregate selection al-
gorithm versus the number of subnets (B = 2
and Dr = 100).

ror curve. The number of subnets was set to 80 and the num-
ber of border routers was set to two for this figure. As the
figure shows, the performance of the aggregation algorithm
is independent of the distance range after we normalize the
number of aggregates and the error bound.

Next we look at the run-time characterstic of the algo-
rithm. We only report the run-time of the aggregate se-
lection algorithm and exclude the run-time of the tree con-
struction time. We do so for two reasons. The first reason
is that the time spent within the aggregate selection proce-
dures dominates the overall execution time. The other rea-
son is that the tree construction needs to be executed only
when the subnet addresses change whereas the aggregate
selection algorithm needs to be executed whenever the dis-
tance matrix changes or the user wants to change the error
bound. We believe that in operational environments, the
distance matrices change much more often than the subnet
addresses. Figure 7 plots the run-time versus the number of
subnets for different error bounds. The number of border
routers was set to two and the distance range was set to 100
for this plot. As expected, as the error bound gets tighter, it
becomes more difficult to select the desired aggregates, and
so the run-time of the algorithm increases. We have deter-
mined that the curves in Figure 7 lie between O�N�� and
O�N��, which is much better than the worst-case run-time
complexity (O�N� � N�B��) derived in section 4.3. The
worst-case complexity was derived with the assumption that
the algorithm has to invoke FindAggr for all possible val-
ues of �X�Y�N�. This does not hold true for the results
presented here. We have verified that the algorithm was

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300

M
em

or
y

(M
B

)

Number of subnets

K = 0
K = 20
K = 40
K = 60
K = 80

K = 100

Figure 8. Total memory used by the aggre-
gate selection algorithm versus the number
of subnets (B = 2 and Dr = 100).

able to find the minimum number of aggregates by explor-
ing only a part of the search space. We also measured the
run-time for varying number of border routers, and found
that the number of border routers did not have any effect on
the run-time.

Finally, Figure 8 plots the maximum memory consump-
tion of the algorithm versus the number of subnets for dif-
ferent error bounds. In our implementation, the majority of
the memory is used for a three-dimensional array that im-
plements the dynamic programming by keeping track of the
aggregates as they are found for a given value of the (X , Y ,
N) triplet. Since the size of the array has O�N�� scaling,
the overall space complexity is alsoO�N��. However, most
space reserved for the array is never utilized since the algo-
rithm typically converges to the final result after exploring
only a very small portion of the search space. For example,
only 1% of the reserved array memory is utilized when N
is 300 and K is set to zero. Thus, for large networks, the
memory requirements of the algorithm could be reduced by
simply using more efficient data structures.

6. Conclusions

Address aggregation is used for reducing resource con-
sumption on routers outside an OSPF area. However, ad-
dress aggregation leads to suboptimal routing since a path
selected between a source outside an area and an aggregated
destination in the area can deviate from the shortest path.
This paper proved that the path selection error introduced
by aggregation can be bounded by the parameters associ-

ated with the destination area only. Based on this theoret-
ical result, we proposed an algorithm for determining the
minimum number of aggregates subject to a user-defined
bound on the acceptable maximum error in path selection.
The algorithm can be applied on a per-area basis, which is
a tremendous advantage from both the operational and scal-
ability perspectives. The algorithm also offers network ad-
ministrators the ability to trade off the number of aggregates
with the acceptable path selection error. Another benefit of
the algorithm is that it is amenable to an on-line implemen-
tation on border routers themselves or a central server [5].

We evaluated the effectiveness of the algorithm on ran-
domly generated OSPF areas. The simulation results
demonstrated that the algorithm is able to significantly re-
duce the number of aggregates (50%) while introducing
only a relatively small error bound (25%) for two border
routers. However, as the number of border routers in-
creases, the effectiveness of the algorithm deteriorates. We
plan to address this as a part of our future work. We are also
looking into ways of reducing overall time and space com-
plexity of the algorithm. We also plan to evaluate the effec-
tiveness of the algorithm on realistic OSPF area topologies.
Finally, we plan to look at ways of assigning addresses to
subnets belonging to a given area in a manner that increases
the effectiveness of our aggregate selection algorithm.

Acknowledgments

We would like to thank Rick Greer, Fred True, Joel Got-
tlieb and Don Caldwell for their help in measuring the mem-
ory consumption of our algorithm. We would also like to
thank the anonymous reviewers for their feedback and com-
ments.

References

[1] E. W. Dijkstra. A Note on Two Problems in Connexion with
Graphs. Numerische Mathematik 1, pages 269–271, 1959.

[2] J. T. Moy. OSPF : Anatomy of an Internet Routing Protocol.
Addison-Wesley, January 1998.

[3] J. T. Moy. OSPF Version 2. RFC2328, April 1998.
[4] R. Rastogi, Y. Breitbart, M. Garofalakis, and A. Kumar. Op-

timal Configuration of OSPF Aggregates. In Proc. IEEE IN-
FOCOM, June 2002.

[5] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K. Ra-
makrishnan. An OSPF Topology Server: Design and Eval-
uation. IEEE Journal on Selected Areas in Communications
(J-SAC), 20(4), May 2002.

Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

