Multidomain Load Balancing*

Samuel T. Chanson, Wantao Deng, Chi-Chung Hui, Xueyan Tang, and Ming Yan To
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
E-mail: {chanson, dwt, cchui, tangxy, myto} @cs.ust.hk

Abstract

This paper investigates dynamic load balancing issues
in the multidomain environment where local area networks
(LANs) are interconnected by the Internet. Because of
the much slower Internet communication speed and limited
bandwidth, existing load balancing algorithms for LANs are
unsuitable for the multidomain environment. New issues
such as lag time in updating load information and network
cost of transferring jobs must be addressed. To tackle these
problems, the conventional least load scheduler is extended
to the multidomain environment by employing a hierarchi-
cal structure, and several quick update techniques are pro-
posed. Also, a heuristic taking both the machine load and
the network cost.into consideration is developed to evaluate
the benefits of sending jobs to computers in different do-
mains. A set of experiments conducted on the BALANCE
testbed showed that the proposed techniques provide signif-
icant performance improvement over existing algorithms.

1 Introduction

Computers nowadays continue to get cheaper and faster.
The development of high speed networks (e.g., Gigabit Eth-
ernet) further reduces the cost of communication between
computers. Moreover, the rapid growth of the Internet
makes it possible for computer networks to cover a large
geographical area. Driven by these technologies, parallel
and distributed computing over networks of computers are
becoming increasingly popular. ‘

Contemporary computing facilities of large organiza-
tions often consist of personal computers and workstations
connected by one or more local area networks (LAN) which
are in turn interconnected via the Internet. This type of envi-
ronment is known as the multidomain environment and the
computers within a LAN constitute a domain. The intranets

*This work was partially supported by a grant from the Research Grant
Council of Hong Kong (Grant No. HKUST6080/97E).

0-7695-0921-5/00 $10.00 © 2000 IEEE

owned by large corporations are examples of the multido-
main environment. Due to uneven job arrival patterns, time-
zone differences and possibly unequal computing capacities
of the individual computers, computers in one domain may
be overloaded while others in a different domain are under-
utilized. Therefore, it is desirable to dispatch jobs to idle or
lightly loaded computers in the multidomain environment
to achieve better resource utilization and reduce job comple-
tion time. This is a natural extension of the existing work on
load balancing in a single LAN environment [9, 10, 12, 15].

The structure of the multidomain environment is much
more complex than that of a single LAN. Due to the
much slower communication speed and limited bandwidth
of most Internet links, longer delays are expected in dis-
seminating load updates. Moreover, unlike a single LAN,
different LANs often do not use a globally shared file sys-
tem in practice. Scheduling jobs to remote domains requires
the transfer of related programs and data files. These factors
make existing load balancing techniques for LANs unsuit-
able for the multidomain environment. The objective of this
paper is to develop effective multidomain load balancing
algorithms. We extended the conventional least load sched-
uler to the multidomain environment by employing a hier-
archical architecture. Several techniques are proposed to
tackle the new problems in multidomain scheduling. These
include quick update of load information and maintaining
multiple least loaded computers for each remote domain.
In addition, a heuristic is developed to estimate the bene-
fits of executing jobs on computers in different domains. It
takes both the machine load and the network cost into con-
sideration. We have evaluated these techniques on an ex-
perimental testbed and the results showed that the proposed
techniques effectively reduce errors in job scheduling and
outperform existing algorithms.

The rest of the paper is organized as follows. Previous
work on multidomain load balancing is outlined in Section
2. Section 3 presents the hierarchical multidomain schedul-
ing model. Sections 4 and 5 describe new techniques to ad-
dress load update delay and network cost respectively. The



experimental environment and performance results are pre-
sented in Sections 6 and 7 respectively. Finally, Section 8
concludes the paper.

2 Related Work

Previous work on multidomain load balancing has con-
centrated on augmenting existing algorithms for LANs with
hierarchical structures to achieve scalability.

Epema et al. [3] extended the Condor load sharing facil-
ity [13] to work in the wide area network (WAN) environ-
ment, where a central manager and a gateway machine are
placed in each Condor pool. The gateway machine main-
tains a list of idle computers in the local pool and exchanges
the list with other gateways. It periodically presents a ran-
domly selected computer from the idle lists to the central
manager for computing the scheduling decision. Since only
one computer is selected at a time, resource sharing between
pools may not be maximized. Lu et al. [14] suggested to
organize computers into a cluster hierarchy based on the
communication costs among clusters. The manager in each
cluster explores the spare capacity of its neighboring clus-
ters from the bottom up to the top layer in the hierarchy.
The algorithm takes speed heterogeneity into account and
uses a threshold to classify the clusters as either saturated
or idle. Jobs are only scheduled to remote domains if they
are considered idle. Hui et al. [5] proposed a two-level load
balancing scheme for interconnected LANs. It uses group
communication at the intra-LAN level to improve efficiency
and adopts the hydrodynamic model [7] at the inter-LAN
level with point-to-point connections. In this scheme, the
gateway computer represents the LAN where it resides in
interacting with other gateways to provide global load bal-
ancing, and acts as an ordinary computer for decentralized
load sharing within the LAN. Large networks of comput-
ers are partitioned into small groups in the strategies pro-
posed by Evans et al. [4]. Besides geographical locations,
the loadings of computers are also suggested to be the par-
tition criterta. Membership of computer groups are periodi-
cally adjusted based on current machine loads to reduce the
load difference among the groups. The drawback of this
scheme in the multidomain environment is that the comput-
ers grouped together may be located at large physical dis-
tances from one another, thus introducing high overheads
in disseminating load updates and transferring tasks at the
intra-group level.

Most of the work mentioned above ignore practical is-
sues such as load update delays and file transfer costs which
are critical to the performance of multidomain systems. We
have focused on these issues in our study and some solu-
tions are presented in this paper to enhance multidomain
scheduling performance.

316

3 Hierarchical Scheduling Model

A common way in addressing the scalability problem
in large computer networks is to adopt a hierarchical ap-
proach. It can be used in load balancing in the multidomain
environment as shown in Figure 1. A gateway computer
is designated in each domain to handle inter-domain com-
munication. It collects load information of computers in
the local domain and exchanges the information with other
gateways. The gateway computers are also responsible for
sending jobs to and receiving jobs from remote domains.
Non-gateway computers only communicate with the gate-
way in their domain and do not directly contact computers
outside the local LAN for load balancing purposes.

; N N
I

-deer- |

L o '

A Al A et

- Nt PRI L

/
| /

'

I \F O Computer
. . ‘ . © , @ Gateway

) Internet Connection

{_ Local Area Network (LAN)

Figure 1. The Multidomain Environment

Load control at the inter-domain level can be either cen-
tralized or distributed. The advantage of making decisions
centrally is simplicity because load information need not
be replicated at different locations. However, the central
scheduler may become a performance bottleneck as the sys-
tem size increases. Moreover, for a large scale system that is
geographically distributed, consulting the central scheduler
incurs non-negligible overhead and network delay. The cen-
tralized scheme also creates fault-tolerance problems due
to single point of failure. Therefore, a distributed control
mechanism is used at the inter-domain level in our proposal.
On the other hand, since computers in the same LAN are
typically connected by a high speed network, it is feasible
to apply a centralized control scheme at the intra-domain
level to improve efficiency. Therefore, our model uses dis-
tributed control at the inter-domain level, and centralized
control within a LAN (intra-domain level).

In our scheduling model, a job scheduler (called gate-
way scheduler) is associated with each gateway computer.
All jobs submitted in the local domain are scheduled by the
gateway scheduler. Every gateway g; executes the same al-
gorithm BASIC-MDS (see Algorithm 1). The data struc-
ture loadlist is an ordered set that stores the information of
computers in the same domain in increasing order of their
loads. The information for each computer has the format
info(c) = (c, speed(c),load(c)), where c is the name of
the computer, speed(c) and load(c) are the relative speed



of ¢ and the load on c respectively. In BASIC-MDS, the
loadlist sent to a remote domain only includes the informa-
tion of the least loaded computer in the sender’s domain in
order to simplify computation and conserve network band-
width. The run queue length of ¢ is used to characterize
load(c) as a previous study suggests that this metric best
describes the load of a computer [11]. To handle the dif-
ferences in computing capacities, this load metric is nor-
malized by the computer’s speed in our scheduling model.
Specifically, the load of a computer is defined as

run queue length + 1
load = .
speed

This metric approximates the effective computing capac-
ity available to a new job if it is scheduled to run on the
computer (hence the “+1” in the numerator). Note that the
projected load is always positive (greater than zero).

Algorithm 1 BASIC-MDS (z)

gi: gateway computer where algorithm is executed.
d;: domain where g; resides.

1. For each domain dj, let loadlist; = ¢.
2. Let loadlist; = J,eq,{info(c)
(¢, speed(c), sreearey -

3. Sort all info(c) € loadlist; in increasing order of
info(c).load.

4. Send message { ‘“update-remote-load”, loadlist;[1] ) to
gateway g;,V g; # gi-

5. Receive an incoming message M.

6. If M.t = “local-job-arrival”

I

info(c)

(6.2) Find cjeast such that info(cieast).load =
min{info(c).load : info(c) € U, loadlist;}.
(6.b) If ¢ieast € d; then
(6.b.1) Send M.job to run on computer Cieqst.
(6.¢) If Creast ¢ di then

(6.c.1) Send message ( “‘remote-job-arrival”, M.job ) to
gateway g;, where Ceast € dj.

7. If M.t = “remote-job-arrival”

(7.a) Find cjeast such that info(cieast).load =
min{info(c).load : info(c) € loadlist;}.

(7.b) Send M.job to run on computer Cieqst-
8. If M.t = “update-remote-load”

(8.a) Let loadlist; = {M.info(c)}, where ¢ € d;.
9. If M.t = “update-local-load”

(9.a) Letloadlist; = loadlist; U {M.info(c)}.

(9.b) Sort all info(c) € loadlist; in increasing order of
info(c).load.

(9.c) Ifloadlist;[1] changes during sorting

(9.c.1) Send message ( ‘“‘update-remote-load”,
loadlist;[1] ) to gateway g;,V g; # gi.

10. Goto step 5.

After initialization (steps 1 to 3), g; broadcasts its state
(i.e., the least loaded computer in its domain) to other gate-
ways and starts processing incoming messages in the main
loop. There are two classes of messages in the algorithm:
“load update” messages and “job arrival” messages. A load
update message M has the format (¢,in fo(c)) where t is
the message type and in fo(c) contains the information of
a computer ¢. When the state of a computer in domain d;
changes, an “update-local-load” message is sent to gateway
gi with M.in fo containing the updated information of the
computer. On receiving the updated information, g; sorts all
computers in the local domain (i.e., loadlist;) in increasing
order of their loads (step 9.b). If the least loaded computer
in loadlist; (or its load) changes after sorting, g; sends an
“update-remote-load” message to the other gateways and
stores the new information of the least loaded computer in
M.info (step 9.c). A type t job arrival message M has the
format (¢, job) where job denotes the job to be scheduled.
A “local-job-arrival” message is sent to gateway g; when a
new job is submitted in domain d;. The job is directly sent
to run on the least loaded computer ¢jeqs; in the network if
Cleast Delongs to d; (steps 6.a and 6.b). Otherwise, the job
is sent to the gateway in Cjeqs: 'S domain by a “remote-job-
arrival” message (step 6.c). After receiving the message, the
remote gateway may reallocate the job if the least loaded
computer in its domain has changed (step 7). Note that the
job is not allowed to be rescheduled to another domain to
avoid transferring the job between domains indefinitely.

BASIC-MDS does not consider lag time of load updates
and network cost of file transfers. In the next two sections,
we propose several new techniques to enhance the perfor-
mance of BASIC-MDS.

4 Load Update Delay

The delay in load information update is an important is-
sue in multidomain load balancing. The lag time in dissem-
inating load information is typically much larger than that
in a LAN and can vary greatly due to network congestion.
Hence it cannot be ignored. It is possible that the scheduler
has not received the updated load information from a re-
mote domain when a new job arrives. As a result, a lightly
loaded computer can quickly become overloaded because
all the schedulers send jobs to it before the new load infor-
mation is available. This is known as the herd effect [2] and
it often leads to incorrect job scheduling and poor perfor-
mance. '

Solutions to the herd effect are not straightforward.
Some obvious solutions such as not assigning any more jobs



to the same computer until the updated load of that com-
puter arrives do not work well as shown in our simulation
experiments. The reason is two folded. First, it is possible
_ that the remote computer remains to be the least loaded ma-
chine after receiving the new job. Second, if the scheduler
has a large list of jobs waiting to be scheduled, after dis-
patching a job to each remote domain, the rest of the jobs
must wait until the next load update message arrives. In
both cases, there are unnecessary wait times.

In the rest of this section, we describe two techniques
that reduce incorrect job scheduling due to load update de-
lay. Their effectiveness is verified by the experimental re-
sults given in Section 7.

4.1 Quick Load Update Technique

The strategy proposed by Hui et al. [8] takes into con-
sideration the load update delay, but works only in the cen-
tralized scheduling environment. It suggests that the sched-
uler keeps track of the number of jobs currently allocated to
each computer and updates the load of the destination com-
puter immediately after a scheduling decision is made. An
improved technique which we call quick load update tech-
nique has been developed to allow efficient scheduling in
the multidomain environment.

The main idea of quick load update is for the scheduler
to refresh the load information of the computers as early as
possible. Consider the situation where the gateway G 4 of
domain A allocates a job to the least loaded computer ¢ in
the same domain (see Figure 2). As soon as the schedul-
ing decision is made but before the job is dispatched, G 4
can immediately update its database by adding m to
load(c) (i.e., increasing the run queue length of ¢ by 1)
to approximate the new load of ¢ (step 3). Notice that af-
ter the update, either Least 4 or load(Least 4) is changed,
where Leasti denotes the least loaded computer in do-
main A. Therefore, G 4 needs to broadcast the new least
load information to gateways in the other domains (step 4).
This can also be done before G4 actually sends the job to
c. The quick update technique enables gateway machines
to refresh the load information before the load monitor on
¢ detects a load change. The gateways use this “updated”
load information until the new load index reported by c¢ is
received via G 4 (steps 7 and 8).

4.2 Keeping Multiple Least Loaded Computers

If the gateway scheduler has up-to-date information in-
stantaneously, it is sufficient to maintain only the least
loaded machine of each remote domain for scheduling pur-
poses. However, due to the slow inter-domain connections,
what the scheduler believes to be the least loaded machine
may be obsolete even with the quick update technique. As
a result, the scheduler may make errors in scheduling jobs,

318

O Computer
© Gateway

’wr Local Area Network (LAN)

1. Receive job arrival message

2. Compute scheduling decision

3. Fast update local gateway

4. Fast update remote gateways
5.Send job to ¢

6. Detect load change

7. Report actual load(c)

8. Send actual load(c) remote gateways

Figure 2. Quick Load Update Technique

especially when the number of jobs waiting to be scheduled
is large. We suggest to let the gateway scheduler maintain
multiple (say n) least loaded computers for each remote do-
main instead of only one. This gives the scheduler a better
picture of the load status in the remote domains. Once the
scheduler allocates a job to the least loaded computer of a
remote domain, it updates the load index of that computer
by adding 1 to its run queue length and sorts the loads of the
n computers for that domain in its database. This technique
further shortens the delay in disseminating load updates.

("“‘5' 0@, 1)Domain B

_________ i

)( 1)Domain C

O Computer
© Gateway

- Internet Connection
{ ) Local Area Network (LAN)

B 6010

000++@®

Domain A |

Figure 3. Example of Keeping Two Least Loaded Com-
puters

Consider the example in Figure 3, where a batch of 3 jobs
(j1, 72 and j3) are submitted in domain 4, and n = 2. X,
and X denote the least loaded and the second least loaded
computers in domain X respectively (X = A4, B,C). A
2-tuple (s,q) is associated with each computer, where s
is the relative speed and g is the current run queue length
of the computer. According to the load metric formula

Tun queue length+1 : :
G q“e;;eed , the gateway G 4 will allocate j; to C)

(load(Cy) = 35 = 0.36 is the smallest). Suppose G 4 only
keeps one least loaded machine for domains B and C re-
spectively. Since the new load of C] (i.e., 227; = 0.7 is
2 = 0.67,
load(By) = =
B respectively. On the other hand, if G 4 has information
and 73 will be scheduled to run on C> because its loading
is lighter than those of A; and B; (load(Cs) = 2 = 0.4,

higher than those of A; and By (load(A,) = %
= = 0.67), 72 and jz will be sent to A; and
of the two least loaded machines in each remote domain, j,
5.0



and after receiving js, load(Cz) = 5% = 0.6). The overall
performance will improve as a consequence.

It is intuitive that the larger the number of least loaded
computers kept by the scheduler, the better the performance.
Experiments were performed on a discrete event simulator
for a range of system configurations and system loading is
kept near the saturation point (since load balancing is not
useful when the workload is light). The results showed
that keeping more than two least loaded computers did not
further improve system performance substantially [1]. The
reason is that in our scheduling model, jobs sent to a re-
mote domain may be reallocated by the gateway there based
on more recent load information (step 7 of BASIC-MDS in
Section 3). Hence, aggressively using more least load infor-
mation of remote domains does not enhance performance
greatly. Furthermore, system overhead increases with the
amount of least load information maintained. Therefore,
we propose to maintain two least loaded computers of each
remote domain at the gateways.

4.3 Formal Description of the Algorithm

The improved scheduling algorithm MDS is presented
more formally in Algorithm 2. It integrates the above tech-
niques into the BASIC-MDS algorithm. Different from
BASIC-MDS, an “update-remote-load” message in MDS
has the format (¢, in fo(c1),in fo(cz)) where info(ci) and
in fo(cz) store the load information of the two least loaded
computers respectively (steps 4, 6.d.1,7.d and 9.c.1). More-
over, on receiving. an “update-local-load” message, new
least load information is sent to remote gateways when ei-
ther one of the first two items in [oadlist; changes after sort-
ing (step 9.c). The quick load update technique is used in
steps 6.b, 6.c and 6.d.1 for “local-job-arrival” messages, and
in steps 7.b to 7.d for “remote-job-arrival” messages. Steps
6.b and 6.c also serve the purpose of refreshing loadlist;
when a job is scheduled to a remote domain d;.

Algorithm 2 MDS (z)
gi: The gateway computer where the algorithm is executed.
d;: The domain where g; resides.
1. For each domain d;, let loadlist; = ¢.
2. Let loadlist; = Uced,- {info(c)
(¢, speed(c), spmaarey )}

3. Sort all info(c) € loadlist; in increasing order of
info(c).load.

4. Send message ( “update-remote-load”,
loadlist;[1], loadlist;[2] ) to gateway g;, V g; # i

info(c)

il

5. Receive the first incoming message M.
6. If M.t = “local-job-arrival”

(6.a) Find cieqst such that info(cieqst)-load =
min{info(c).load : info(c) € |J; loadlist;}.

(6.b) Let info(cieast).load =
1
info(cieast) speed”

(6.c) Sort all info(c) € loadlist; in increasing order of
info(c).load, where cieqst € d;.

(6.d) If cleast € d; then

info(cieast ).load +

(6.d.1) Send message (  ‘“update-remote-load”,
loadlist;[1], loadlist;[2] ) to gateway
95 V95 # 9i-

(6.d.2) Send M.job to run on computer Creqst.
(6.€) If creast ¢ di then

(6.e.1) Send message ( “remote-job-arrival”, M.job ) to
9j, Where creast € dj.

7. If M.t = “remote-job-arrival”

(7.a) Find  Cleqst such that info(Cieast).load =
min{info(c).load : info(c) € loadlist;}.

(7.b) Let info(cieast).load = info(cieast)-load +

1

info(cleast)-speed”

(7.c) Sort all info(c) € loadlist; in increasing order of
info(c).load.

(7.d) Send message ( “update-remote-load”,
loadlist;[1], loadlist;[2] ) to gateway g;, ¥V g; # gi.

(7.¢) Send M.job to run on computer Creqst-
8. If M.t = “update-remote-load”

(8.a) Letloadlist; = {M.info(c1), M.info(cz2)}, where
c,c2 € dj.

9. If M.t = “‘update-local-load”
(9.2) Letloadlist; = loadlist; U {M.info(c)}.

(9.b) Sort all info(c) € loadlist; in increasing order of
info(c).load.

(9.¢) If loadlist;[1] or loadlist;[2] changes during sorting

(9.c.1) Send message (  ‘“update-remote-load”,
loadlist;[1], loadlisti[2] ) 10 g;, V g; # gi.

10. Goto step S.

5 Network Cost

Since computers in a local area network usually use the
same file system and there are dedicated file servers, pro-
gram and data files do not have to be transferred when a job
is scheduled to run on a different computer in the same LAN
(only a command line is sent). Hence, the network cost of
remote job execution can be ignored in the single LAN en-
vironment. However, in the multidomain environment, the
related files of a job need to be transferred through much
slower Internet links if the job is scheduled to run in a re-
mote domain. Therefore, the cost of file transfers must be
taken into consideration in the scheduling algorithm. For
example, when two computers have similar loadings, the



one connected to the local gateway with faster communi-
cation link should be selected. Experimental results have
shown that even though the network cost may be small com-
pared to the job execution time, mean response ratio and
fairness (see Section 6.4 for definitions) can be substantially
improved if network cost is taken into account.

Consider the situation where a job J submitted in do-
main A is scheduled to run on computer ¢ in a remote do-
main B. The completion time of job J is approximated by
the following formula:
run-time(J)(run-queue-length(c) + 1) job-size(J)
link-speed(A, B)’

where the meanings of the variables are listed in Table 1.

|
speed(c) t

execution time of job J when
it runs by itself on a computer
with relative speed 1

run-time(J)

total size of job J (program,

data and system information)
that has to be transferred to
run on a remote computer

job-size(J)

current run queue length

run-queuve-length(c) of computer ¢

speed(c) relative speed of computer ¢

speed of the communication link

link-speed(A, B
ink-speed(4, B) between domains 4 and B

Table 1. The Meaning of Variables in Formula (1)

The first term in formula (1) estimates the elapsed time
of job J on computer ¢ under the processor sharing disci-
pline and the second term estimates the job transfer time.
The job should be scheduled to the computer with the mini-
mum expected completion time. Unfortunately, the run time
of a job is usually not known when the job arrives. Even if
the job size is known, it does not help much in making the
scheduling decision without knowledge of the job run time.
Notice that run-time(.J) does not depend on the speed of
the computer (see Table 1 for definition). Therefore, for-
mula (1) can be divided by run-time(J) without affecting
the scheduling decision:

run-queue-length(c) + 1
speed(c)

job-size(J) 1
run-time(J) link-speed(A, B)

@

The value computed by the above formula is referred to

. . . . job-size(J)
as the relative compl.cnon time of the job. =" Oy s the
only unknown term in (2) and we propose to use a constant

C to replace it. Thus, formula (2) becomes:

run-queue-length(c) + 1 . 1
speed(c) link-speed(A, B)’

(3

320

This is a heuristic load metric that takes link speed into
consideration. It can be used to evaluate the benefits of
sending jobs to computers in different domains. The com-
puter that provides the smallest value according to formula
(3) should be selected. The constant C' is selected such that
is much smaller (e.g., one or two orders

1

C link-speed(A,B)

of magnitude lower!) than Zngueue-length(c)+l = ppeo a0
g speed(c) '

tual value of C within this range is not very critical to the
performance. This is because by adding the network cost
term C - m in the load metric, a job has higher
probability to be scheduled to domains that introduce less
(or no) network costs. Therefore, for short jobs where net-
work cost is comparable to run time, the completion time
using this load metric would decrease significantly. On the
other hand, for long jobs where network cost is negligible
compared to run time, the completion time would not be
affected very much. As a result, the overall system per-
formance, especially mean response ratio and fairness (see
Section 6.4 for definitions), is improved (see experimental
results in Section 7). ‘

Either formula (2) or (3) can be augmented on top of the
MDS scheduler (in step (6.a)). Notice that since no net-
work costs are incurred if a job is scheduled to run in the
local domain, the second item in formula (2) or (3) (i.e.,
the file transfer costs) is set to O for local computers. MDS
augmented with formulas (2) and (3) are referred to as the
MDS-NET and the MDS-C algorithms respectively.

6 Experimental Environment
6.1 The BALANCE Testbed

The experiments were conducted on the BALANCE
testbed [6]. BALANCE is a flexible load balancing system
that provides efficient remote execution facilities and allows
the user to implement his/her new system schedulers. Cur-
rently, it runs on Solaris, SunOS and the Windows NT envi-
ronment. The gateway scheduler is implemented by a dae-
mon process balgateway running on the gateway com-
puter.

6.2 System Architecture

The experimental environment consists of eleven com-
puters running at different speeds. They are grouped into
three domains and every inter-domain communication link
is configured to run at a specified speed. One of the com-
puters in each domain is designated as the domain gateway.
The software architecture includes a set of communicating
processes shown in Figure 4.

A Job-generator is placed in each domain to generate
jobs which are sent to the Scheduler of the local gateway.

'Load balancing in the Internet environment is beneficial mainly for
jobs with large computational requirements.



Domain 1 Domain 2

(f Job-generator
Scheduldr Schedul;_ ﬁ

Load-monitors

Job-generator

Load-monitors
Workers Workers

Job-generator
Workers

Domain 3 Load-monitors

Figure 4. Schematic Diagram of Software Processesin
the Experimental Environment

The Scheduler assigns jobs to the computers as computed
by the scheduling algorithm. Based on the computed deci-
sion, the Scheduler either sends the job to a remote gateway
or spawns a Worker at the selected computer in the local
domain to execute the job. A Load-monitor runs on every
computer and sends the load information to the Scheduler
when there is a change. The Scheduler computes the least
load information in the domain and informs the other Sched-
ulers whenever it is updated. Once started, the jobs run to
completion on the assigned computers and are not resched-
uled.

6.3 Workload Characteristics

The experiments are designed to test the performance of
the load balancing algorithms over a wide range of work-
load characteristics. Each job is associated with two pa-
rameters: run time and job size (refer to Section 5 for def-
initions), which are characterized in terms of seconds and
kilobytes respectively. In our experiments, the run time fol-
lows a segmented uniform distribution. For example, the
distribution in Table 2 specifies that 20% of the jobs have
run times U(0,150) seconds, 60% of the jobs have run
times U(150,400) seconds and so on, where U(z,y) is a
uniformly distributed number between z and y. The job
size follows a discrete distribution. The example in Table 2
means that 40% of the jobs have sizes of 100KB, 40% of
the jobs have sizes of 200KB and so on. The lag time of
transferring a job between domains is calculated as follows.
Assume L = S/B is the job transfer time when the inter-
domain communication link has no other traffic, where S is
the job size and B is the speed of the link. The job transfer
delay is set to U(L,3L) and U(3L,5L) with probabilities
of 90% and 10% respectively.

In order to investigate the performance of the schedul-

321

Run Time Distribution Job Size Distribution
range percentage size percentage
0-150sec 20% 100KB 40%
150 - 400 sec 60% 200KB 40%
400 - 600 sec 15% IMB 20%
600 — 1500 sec 5%

Table 2. Example of Run Time and Job Size Distribu-

tions
|

ing algorithms in balancing the workload among domains,
one of the three domains is intentionally designed to have
low aggregate processing speed and high job arrival rate.
This domain is referred to as the slow domain. The ra-
tio of the job arrival rates between the “slow domain” and
the other domains is set at 3:1. A batch arrival pattern is
assumed in our experiments. The batch size is set to be
U(minbatchsize, mazxbatchsize), where minbatchsize
and mazbatchsize are the minimum and maximum num-
ber of jobs in a batch respectively. Unless mentioned ex-
plicitly, the average batch inter-arrival times are set such
that the system utilization approaches 100%. A total of 250
jobs were generated in each run, of which 150 were gener-
ated in the “slow domain” and 50 were generated in each of
the other domains. Each run typically takes several hours
depending on the workload and all data shown in Section 7
were the average result of 2 to 3 independent runs.

6.4 Performance Metrics

The following three metrics were selected to evaluate the
scheduling performance:

1. Mean response time: This is defined as the average
completion time of all the jobs. It is a commonly used
metric to evaluate scheduling performance.

. Mean response ratio: The response ratio R of a job
is defined by the formula R = E;/E,, where E; is
the actual completion time of the job measured in the
experiment, and E; is the job’s run time as defined
in Section 5. Mean response ratio is defined as the
average response ratio over all the jobs. This metric is
more objective as the effect of job size on performance
is eliminated. The smaller the mean response ratio, the
better the performance.

. Fairness: Fairness is defined as the standard devia-
tion of R. This definition of fairness is reasonable as
users are likely to expect short delays for small jobs but
willing to tolerate longer delays for larger jobs. The
smaller the fairness, the better the performance.

4. Network Cost per Job: This is defined as the average
lag time introduced by file transfers over all the jobs.



It 1s used to compare MDS with algorithms that take
network cost into consideration i.e., MDS-NET and
MDS-C (see Sections 7.2 and 7.3).

7 Experimental Results

The performance results are presented in this section. It
is found that both mean response time and mean response
ratio are reduced on using the quick update technique. Fur-
thermore, load metric taking network cost into account im-
proves mean response ratio and fairness significantly. The
proposed algorithm performs well over a wide range of sys-
tem loads.

7.1 Effect of Load Update Delay

The proposed techniques for load update delay are eval-
uated using the system configuration listed in Table 3 and
the workload characteristics shown in Table 2 (see Section
6.3). The batch size of jobs is uniformly distributed be-
tween 1 and 3. In order to assess the benefits of individual
techniques separately, an additional scheduling algorithm
QUICK-MDS which only employs the quick load update
technique (but not the two least loaded machines) was also
tested. The experimental results are summarized in Table 4.

System Configuration
D . Number of Relative Speeds
omain
Computers of Computers
D, 2 3.0,3.0
D- 5 1.5,1.5,1.5,15,1.5
Ds(slow) 4 1.2,1.2,1.2,1.0
Link Speeds: [D; — D»]: 128Kbps
[Dl - Dg]l 256Kbp5 [D2 - D3]I 256Kbp$

Table 3. Experimental Setting 1

QUICK-MDS by almost 10%. These observations show
that the proposed techniques effectively reduce the duration
of load update delay so that gateway computers have more
up-to-date information on system loadings thereby making
fewer scheduling errors. A number of experiments for dif-
ferent system settings have been carried out and they all
show the same performance trends [1].

7.2 Effect of Network Cost

In this section, we investigate the impact of file transfer
costs on scheduling performance. The system configuration
is listed in Table 5. Job size distributions and run time dis-
tributions are specified in Tables 6 and 7. The batch size is
uniformly distributed in the range [1 - 3].

System Configuration
D . Number of Relative Speeds
omain
Computers of Computers
D, 2 3.0,3.0
D, 6 1.5,1.5,1.5,15,1.5,1.2
Ds(slow) 3 1.2,1.2,1.0
Link Speeds: [D1 — D;]: 1024Kbps
[D; — D3): 56Kbps [D2 — D3]: 256Kbps

Table 5. Experimental Setting 2

Small Job Size Large Job Size
size percentage size percentage
100KB 40% 200KB 40%
200KB 40% 500KB 40%
1IMB 20% 3MB 20%

Table 6. Job Size Distributions

Small Run Time Medium Run Time
range (sec) percentage range (sec) percentage
10-60 20% 10-60 20%
60 - 600 20% 60 — 1200 20%
600 — 1800 35% 1200 - 3600 35%
1800 - 3600 20% 3600 - 7200 20%
3600 - 7200 5% 7200 - 21600 5%

BASIC | QUICK
-MDS | -MDS MDS
Quick load update X Vv Vv
Two least loaded computers X X N4
Mean response time (sec) 391 283 257
Mean response ratio 1.46 1.04 0.96
Fairness 0.83 0.64 0.60

Large Run Time

Table 4. Performance for Experimental Setting 1

From Table 4, it can be seen that the load update de-
lay is a critical factor affecting the performance of multido-
main job scheduling. Algorithms taking this factor into con-
sideration improve the system performance significantly.

QUICK-MDS outperforms BASIC-MDS by nearly 30% in

terms of both mean response time and mean response ra-
tio. MDS further enhances the scheduling performance over

range (sec) percentage
20-120 20%
120 - 1800 20%
1800 - 7200 35%
7200 - 21600 20%
21600 - 43200 5%

322

Table 7. Run Time Distributions

Table 8 shows the experimental results of MDS and
MDS-NET under different job size distributions. The small



Job Size Distribution Small Job Size Large Job Size
Algorithm MDS | MDS-NET | MDS | MDS-NET
Mean Response Time (sec) | 1180 1088 1180 1190
Mean Response Ratio 1.36 0.97 3.16 1.02
Fairness 2.83 0.41 19.5 0.42
Network Cost per Job (sec) | 34.4 28.7 94.0 55.0

Table 8. Performance for Different Job Size Distributions

Run Time Distribution Small Run Time Medium Run Time Large Run Time
Algorithm MDS | MDS-NET | MDS | MDS-NET | MDS | MDS-NET
Mean Response Time (sec) | 1180 1190 2530 2470 7060 7000
Mean Response Ratio 3.16 1.02 1.43 1.00 1.25 1.07
Fairness 19.5 0.42 2.14 0.39 1.02 0.43
Network Cost per Job (sec) | 94.0 55.0 67.1 47.2 62:0 58.1

Table 9. Performance for Different Run Time Distributions

run time distribution (see Table 7) is used in this set of ex-
periments.

Table 9 presents the performance results for different run
time distributions. The large job size distribution (see Ta-
ble 6) is used in this set of experiments.

As shown in Tables 8 and 9, MDS-NET reduces mean re-
sponse ratios considerably compared to those of MDS. This
is because MDS-NET assigns jobs to remote domains only
when the reduction in job elapsed time on the designated
computer overweighs the network cost of sending the job
there. As a result, the average network cost decreases and
more jobs are processed by local computers under MDS-
NET than MDS. Table 10 shows the number of jobs that are
generated and processed by the same domain for different
job size distributions.

Small Job Size Large Job Size
Algorithm | MDS | MDS-NET | MDS | MDS-NET
Domain 1 17 33 26 32
Domain 2 28 34 30 41
| Domain 3 28 48 31 52

Table 10. Examples of Numbers of Jobs Allocated to
Local Domains (250 jobs per run)

Another observation is that the higher the network cost,
the greater the improvement of MDS-NET over MDS. In
Table 8, the reduction of mean response ratio increases with
increasing job size (28.7% for small job size and 67.7% for
large job size). Table 9 shows that the reduction of mean re-
sponse ratio is more pronounced when the jobs have smaller
run times (14.4% for large run time, 30.1% for medium
run time and 67.7% for small run time). This is consistent
with formula (2) which estimates the relative job comple-
tion time. The scheduling performance is more sensitive to
network cost if the average job size increases or the average

323

job-size(J

run time decreases (i.e., the ratio of runtime(d) increases).

According to formula (2) in Section 5, network cost
does not have much effect on scheduling decisions of jobs
with large run times (i.e., when the network cost is neg-
ligible compared to the run time). In other words, jobs
with small run times benefit most from MDS-NET. Al-
though the response ratios of these jobs decreases signif-
icantly, the absolute values of the reductions in their re-
sponse times are not large. Therefore, MDS-NET has lit-
tle impact on mean response time over all jobs. This ex-
plains why MDS-NET show similar mean response times
compared to MDS but much better mean response ratios
and fairness in Tables 8 and 9. For example, MDS-NET
improves mean response ratio by 30.1%, and fairness by
81.8% under medium run time and large job size distribu-
tions.

7.3 Performance of Network Cost Heuristic

The performance of using the heuristic formula (3) to
predict scheduling benefits is evaluated in this subsection.
The experimental settings include the system configuration
shown in Table 11, the small job size distribution and the
medium run time distribution (see Tables 6 and 7). The job
batch size is uniformly distributed in the range [1 — 3]. The
constant C' is set at 5.6 and the link speeds are expressed in
Kbps (e.g., for the setting in Table 11, the second term in
formula (3) has the value of % = 0.1 when D, is estimat-
ing the completion time of executing jobs in Dj3).

Table 12 shows the performance results for system uti-
lizations of 100% and 80%. Similar to MDS-NET, the
MDS-C scheduler gives higher priorities to the local com-
puters and those connected by fast Internet links. It gives
better mean response ratios compared to those of MDS
(11.8% for system load of 100% and 18.7% for system load
of 80%). The scheduling fairness is also improved consid-
erably. These observations indicate that the heuristic effec-



System Configuration
. Number of Relative Speeds
Domain
Computers of Computers

D, 2 3.0,3.0

D, 6 15,1.5,1.5,15,1.5,1.2
Ds(slow) 3 1.2,1.2,1.0

Link Speeds: [Dy — D;]: 1024Kbps
[Dl - D3]2 256Kbp8 [D2 - D3]Z 56Kbps

Table 11. Experimental Setting 3

System 100% 80%
Utilization
Algorithm | MDS | MDS-C | MDS | MDS-C
Mean Response | 5450 | 2400 | 1650 | 1570
Time (sec)
Mean Response | |7 | 112 | 123 | 1.00
Ratio
Fairness 1.88 1.53 2.51 1.03
Network Cost | 403 | 347 | 474 | 348
per Job (sec)

Tabie 12. Performance of Network Cost Heuristic

tively approximates the file transfer costs. The average net-
work costs under MDS-C are 21.7% and 26.6% lower than
those of MDS. On the other hand, for similar reason given
in the previous subsection, MDS-C does not improve mean
response time very much. We have performed a large num-
ber of experiments for different values of C' on a discrete
event simulator and the results showed that system perfor-
mance is not very sensitive to the value of C' when the ratio
mk—-csﬁ is in the range 0.01 to 0.2.
8 Conclusion

In this paper, we have investigated load balancing strate-
gies in the multidomain environment where the computers
are located in different local area networks which are phys-
ically wide apart from one another. A hierarchical archi-
tecture is integrated into the conventional least load sched-
uler to achieve scalability. Several techniques are proposed
to tackle the problems inherent in the multidomain envi-
ronment. Two strategies including quick load update and
maintaining multiple least loaded computers at the sched-
uler are proposed to reduce the lag time in disseminating
load updates. In addition, a heuristic that considers both
machine load and network speed is suggested to estimate
the completion time of executing jobs in remote domains.
These techniques have been implemented in the hierarchi-
cal scheduler and tested on the BALANCE testbed. Per-
formance results have indicated that the enhanced hierar-
chical scheduler adapts well to the highly dynamic mul-
tidomain environment and improves system performance

324

significantly over existing algorithms in terms of mean re-
sponse time, mean response ratio and fairness.

References

[1] S. T. Chanson, W. Deng, C.-C. Hui, X. Tang, and M. Y.
To. Multidomain load balancing. Technical Report HKUST-
CS99-18, Department of Computer Science, HKUST, Dec.
1999.

M. Dahlin. Interpreting stale load information. In Pro-
ceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 285-296, June
1999.

D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne. A worldwide flock of condors: Load sharing
among workstation clusters. Future Generation Computer
Systems, 12(1):53-65, May 1996.

D. J. Evans and W. U. N. Butt. Load balancing with net-
work partitioning using host groups. Parallel Computing,
20(3):325-345, Mar. 1994,

C.-C. Hui and S. T. Chanson. Efficient load balancing in
interconnected LANs using group communication. In Pro-
ceedings of the 17th IFEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 141-148, May
1997.

C.-C. Hui and S. T. Chanson. Flexible and extensible load
balancing. Software Practice and Experience, 27(11):1283—
1306, Nov. 1997.

C.-C. Hui and S. T. Chanson. Hydrodynamic load balanc-
ing. IEEE Transactions on Parallel and Distributed Systems,
10(11):1118-1137, Nov. 1999.

C.-C. Hui and S. T. Chanson. Improved strategies for
dynamic load balancing. [EEE Concurrency, 7(3):58-67,
July-September 1999.

O. Kremien and J. Kramer. Methodical analysis of adaptive
load sharing algorithms. IEEE Transactions on Parallel and
Distributed Systems, 3(6):747-760, Nov. 1992.

P. Krueger and N. G. Shivaratri. Adaptive location policies
for global scheduling. IEEE Transactions on Software En-
gineering, 20(6):432—444, June 1994.

T. Kunz. The influence of different workload descriptions
on a heuristic load balancing scheme. IEEE Transactions on
Software Engineering, 17(7):725-730, July 1991.

R. Leslie and S. McKenzie. Evaluation of loadsharing al-
gorithms for heterogeneous distributed systems. Computer
Communications, 22(4):376-389, Mar. 1999.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor -
a hunter of idle workstations. In Proceedings of the 8th
IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 104-111, June 1988.

S.Luand L. Xie. A scalable load balancing system for nows.
ACM SIGOPS Operating Systems Review, 32(3):55-63, July
1998.

S. Zhou. A trace-driven simulation study of dynamic load
balancing. [EEE Transactions on Software Engineering,
14(9):1327-1341, Sept. 1988.

(2]

(3]

(4]

{51

[6]

(7

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]



