Generalized Load Sharing for Packet-Switching Networks

Ka-Cheong Leung and Victor O. K. Li
Department of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong, China
{kcleung, vli} @eee.hku.hk

Abstract

In this paper, we propose a framework to study how to ef-
fectively perform load sharing in multipath communication net-
works. A generalized load sharing (GLS) model has been devel-
oped to conceptualize how traffic is split ideally on a set of ac-
tive paths. A simple traffic splitting algorithm, called weighted
fair routing (WFR), has been developed at two different granular-
ity levels, namely, the packet level, and the call level, 1o approx-
imate GLS with the given routing weight vector. The packet-by-
packet WFR (PWFR) mimics GLS by transmitting each packet as
a whole, whereas the call-by-call WFR (CWFR) imitates GLS so
that all packets belonging to a single flow are sent on the same
path. We have developed some performance bounds for PWFR
and found that PWFR is a deterministically fair traffic splitting
algorithm. This attractive property is useful in the provision of
service with guaranteed performance when multiple paths can be
used simultaneously to transmit packets which belong to the same
flow.  Our simulation studies, based on a collection of Internet
backbone traces, reveal that WFR outperforms two other traf-
fic splitting algorithms, namely, generalized round robin routing
(GRR), and probabilistic routing (PRR). These promising results
form a basis for designing future adaptive constraint-based multi-
path routing protocols.

1. Introduction

The convergence of the computer, communications, entertain-
ment, and consumer electronics industry is driving an explosive
growth in multimedia applications [18]. Nowadays, the Internet
provides a convenient and cost-effective communication platform
for electronic commerce, collaboration on research and develop-
ment, education, and entertainment [3]. With the fulminating de-
velopment of the Internet, Internet service providers (ISPs) face
the challenge on how to effectively provision a variety of qual-
ity of service (QOS) guarantees for a large number of concurrent
(connection-oriented or connectionless) communication activities.

One way for the ISPs to respond to this challenge is by capacity
expansion. They can upgrade their backbones by replacing exist-
ing links with larger capacities. Besides, they can install new links
in parallel with the existing ones to reduce the upgrade costs. If

0-7695-0921-5/00 $10.00 © 2000 IEEE

the second approach is used, there must be an effective mechanism
to efficiently route or to distribute traffic to a set of parallel links.

Besides capacity expansion, traffic engineering is a powerful
tool to overcome this challenge. Internet traffic engineering facili-
tates efficient and reliable network operations, and optimizes oper-
ational network utilization and performance, by the application of
technological and scientific knowledge to the measurement, mod-
elling, characterization, and control of Internet traffic, to achieve
specific QOS requirements [2]. The popular routing approach for
the Internet consists of finding a single shortest path from a source
to a destination based on some link cost metrics, which are up-
dated periodically. Although such unipath routing protocols can
adapt very quickly to changing network conditions, they become
unstable under heavy loads or bursty traffic as the link cost metrics
used in the routing algorithms are related to delays or congestion
experienced over the network links [4, 28]. Moreover, at a cer-
tain time instant, some subnets can be heavily congested, while
other subnets along alternate paths are under-utilized. Thus, traf-
fic engineering should be employed to balance the use of network
resources, say link bandwidths. This advocates the use of multiple
paths simultaneously for data transmission.

Load sharing is a channel aggregation approach that permits
data traffic to be dispersed on multiple channels at the same time
to reduce network load fluctuation. Given a set of active paths
connecting a source to a destination, the key to multipath routing
involves answering the following three basic questions:

e At which granularity should multipath routing be applied,
i.e. at the byte level {9, 11], packet level [1, 6,7, 13, 14, 15,
19, 20, 21], call level [5, 27], or otherwise?

e What is the optimal split of traffic along a set of active paths
to achieve the best performance?

e How does one implement the traffic splitter? Or, given the
optimal traffic split, what is the best way to distribute traf-
fic?

As far as the allocation granularity for multipath routing is con-
cerned, a finer allocation granularity, say at the byte level, gives
a better balance on the use of network resources, but a stricter
synchronization requirement is needed. For packet-switched net-
works, like the Internet, the smallest data switching unit is a
packet. Moreover, both connection-oriented and connectionless
traffics are allowed to co-exist, with a strict packet sequencing



maintained within a connection-oriented call, such as a Trans-
mission Control Protocol (TCP) connection. Thus, either packet
level or call level multipath routing is the most suitable for packet-
switched networks.

The determination of the optimal traffic split can be formulated
as solving an optimal routing problem [4, 10, 12] with a specific
objective function, such as the minimization of the expected delay
within a network. An approximate iterative algorithm [28] has
been suggested to improve the responsiveness and convergence of
the routing solution. Besides, a heuristic based on loading and
packet loss rate along a set of loop-free progressive paths’ under
the Open Shortest Path First (OSPF) protocol has been introduced
in [27].

The most common form of traffic splitting distributes packets
to a set of active paths in a round robin fashion [14] or its vari-
ants {1], or dispenses bursts of packets to all participating paths in
a cyclic manner [7, 15]. Such algorithms are quite simple to im-
plement. However, it can only support uniform traffic splitting or
cyclic dispersion on these active paths. With heterogeneous paths,
the best way to spread traffic along multiple paths may not be by
cyclic dispersion, since it may not achieve the objective, such as
minimizing the end-to-end path delay. In addition, it may induce
substantial packet resequencing delay when the end-to-end delays
are quite different among these paths. Such limitations can be al-
leviated by using a splitter which routes packets in a generalized
round robin fashion, according to the given traffic split. Neverthe-
less, these routing approaches implement the desired traffic split
in terms of the number of packets being routed, rather than the
actual workload in bytes. Since packets are generally of different
sizes in packet-switched networks, except Asynchronous Transfer
Mode (ATM) networks, the actual workloads to paths may deviate
unboundedly from the expected workloads.

Since a large volume of traffic in the Internet is TCP-based, an
orderly delivery of packets within the same flow to a destination is
critical to avoid triggering “false losses”, resulting in a substantial
degradation in protocol performance. Thus, all packets within the
same flow should be delivered on the same path. Hashing-based
traffic splitting approaches [5, 27] have been proposed so that all
packets with the same key, such as the same origin-destination (O-
D) pair, will be routed on the same path. These techniques are
usually simple to implement and scalable in terms of the number
of active paths and flows. However, the accuracy in implement-
ing the requested traffic split depends greatly on the choices of
both keys and hashing functions. Moreover, they cannot take the
granularity of flows into account, as connection-oriented calls or-
dinarily demand different bandwidths and QOS requirements and
they should not be treated equally.

The focus of this work is to propose a framework to study how
to effectively perform load sharing in multipath communication
networks. Section 2 develops a generalized load sharing model to
conceptualize how traffic is split on a set of active paths. Section 3
presents both packetized and flow-based weighted fair routing al-
gorithms to achieve the best load balancing according to the given
traffic split. Section 4 outlines a set of traffic splitting algorithms
for performance studies, defines the performance metric that will
be used to compare various splitting algorithms, briefly describes

L A loop-free progressive path is one in which any next hop is “smaller”
in terms of cost than the current hop.

306

the characteristics of the traffic traces used for the simulation, and
examines the simulation results of the proposed traffic splitting
algorithms. Section 5 concludes and discusses some possible ex-
tensions to our work. Lemma and theorem proofs are omitted here
because of constraints in space. Interested readers are requested to
contact the authors for the proofs.

2. The Generalized Load Sharing Model

AN

(a) Processor sharing.

(b) Load sharing.

Figure 1. The roles of processor sharing and
load sharing.

In [1, 5, 26], it has been observed that there is a close rela-
tionship between link sharing and load sharing. Processor shar-
ing is a channel multiplexing technique that allows different traffic
flows to share the same channel or link simultaneously to improve
link utilization, whereas load sharing is a channel aggregation ap-
proach that permits data traffic to be dispersed on multiple chan-
nels at the same time to reduce network load fluctuation. The roles
of these two techniques are diagrammed in Figure 1.

Traffic

Splitter

Figure 2. A generalized sharing model.

Both techniques are aimed at the efficient use of network re-
sources to minimize network congestion and they can be applied
in a complementary manner. For example, a set of traffic flows
can be multiplexed to share a set of outgoing links, as shown in
Figure 2.

To consider a fair allocation of network resources, a general-
ized processor sharing (GPS) approach [23, 24] has been proposed
for link sharing. With GPS, each flow session ¢ is assigned a fair
share weight ¢, for sharing an outgoing network link with capac-
ity C, such that, at any given time, the service rate of a backlogged
session «, rq, 1S given as:

Pa

EiEB ¢i

where B is a set of backlogged sessions during that time.
A methodology that is similar to GPS can be applied for load
sharing. Our load sharing model consists of a network node and

C

Ta =



a set of IV (logical) outgoing links, namely, Link 1, Link 2, ...,
Link N, as shown in Figure 1(b). Without loss of generality, we
assume that there is a single class of traffic for traffic splitting. In
other words, for ease of presentation, all incoming traffic to the
captioned network node will be treated by the same traffic split-
ter, installed with a routing weight vector. Indeed, it is simple to

generalize to cases with multiple classes, each of which can cor- -

respond to a destination with the same quality of service (QOS)
class. Incoming traffic is fed into a traffic splitter for load sharing,
according to its traffic class.

When the node receives an incoming packet destined to another
node, a traffic splitter installed in the network node is invoked to
decide which outgoing link the packet is forwarded to. Once an as-
signment is made, the packet will be dispatched to an output queue
of the corresponding link to wait for transmission. Suppose p; is
the routing weight for Link ¢. It denotes the portion of dispersed
traffic to be routed on Link 4, where vazl p; = 1. Denote the
routing weight vector by p = (p1 p2 pn). Given the
routing weight vector p, the quality of a traffic splitter depends on
how close to p the actual load distribution is at all times.

Let L;(7,t) be the amount of traffic (in bytes) prepared to be
sent on Link ¢ during the time interval (7, t]. Since departing traffic
will be routed on one of the outgoing links, the total amount of
incoming traffic to be forwarded to the destination during the time
interval (7, ], T'(7,t), is equal to the sum of all traffic scheduled
to be routed on each outgoing link to the same destination during
the same time interval. That is,

N
T(r,t) =Y Li(r,t)

=1

for any period (7, t].

A generalized load sharing (GLS) traffic splitter is one that can
divide traffic to the set of outgoing links exactly according to the
given routing weight vector p. Thus, for any period (7, t], a GLS
traffic splitter? is defined [5] as one for which:

Li(r,t) = p: T(,t)

or
Li(Ti t) _ &
L; (T7 t) 17
foreverys,5 =1,2,...,N.
If a traffic source is constrained by a leaky bucket, the follow-
ing lemma states that all dispersed flows split by a GLS traffic
splitter are also leaky bucket constrained.

Lemma 1 Suppose a traffic source is constrained by a leaky
bucket with parameters (o, p), where o and p represent the max-
imum size of the bucket token pool and the average token gener-
ation rate respectively. If it is fed into a GLS traffic splitter, a
dispersed flow to be routed on Link i, where i = 1,2,..., N, is
constrained by another leaky bucket with parameters (p; o, pi p).

To summarize, there are two major attractive features for GLS.
First, it distributes traffic exactly according to a set of prescribed

2In (5], such kind of ideal load balancing is termed ideal traffic
splitting.

307

routing weights. It is always fair deterministically, where the ac-
tual traffic routed to any link is equal to the expected one, for all
time intervals. Second, if a GPS server works with a GLS traffic
splitter, it is possible to make worst-case network queueing de-
lay guarantees when the flows are constrained by leaky buckets.
It follows directly from [23] that the worst-case network queueing
delay of a leaky bucket constrained source is bounded under a GPS
system.

3. Weighted Fair Routing

Like the generalized processor sharing (GPS) approach, the
generalized load sharing (GLS) approach is an idealized scheme
that assumes input traffic to be infinitely divisible for routing. In
reality, the most common communication networks are packet-
switched networks, such as the Internet, where the smallest pos-
sible data unit for routing is a packet. Therefore, it is necessary
to propose a more practical scheme that can closely approximate
GLS.

The proposed scheme should have the following objectives.
First, it should be able to split traffic on multiple routes as fairly
as possible. This means that, given the granularity constraints on
routing, it should try to approximate GLS according to the routing
weight vector as closely as possible, for every time period.

Second, its implementation should be simple and its applica-
bility does not need a substantial modifications on existing proto-
cols. For example, the two most commonly used Internet protocols
are the Transmission Control Protocol (TCP) and the User Data-
gram Protocol (UDP). Each TCP connection requires each packet
to arrive at the destination in order. If a TCP connection routes
packets on multiple paths simultaneously, those packets sent on
different paths may arrive at the destination out of order. “False
losses” and a fast retransmit mechanism are then triggered. This
results in a significant deterioration on protocol performance. This
problem can be partially alleviated by re-scheduling the sending
packet order so that all packets within the same flow are expected
to arrive at the destination in order [17]). Nevertheless, to avoid
modifications in TCP, all packets within the same call should be
routed on the same path. Packet-based load sharing approaches
may not work well for TCP flows and other connection-oriented
flows that require packets to arrive at the destination in order. Yet,
a coarser call-based multipath routing approach can be applied for
load sharing. On the contrary, an UDP connection or any other
connectionless traffic allows packets to arrive at the destination out
of order, without affecting the protocol performance. Therefore,
packet-based approaches can be utilized to realize a fine-grained
load sharing on multiple routes for connectionless traffic.

To satisfy the captioned requirements, a load sharing approach,
called weighted fair routing (WFR), is proposed. The main phi-
losophy of the proposed scheme is to minimize the deviation of
the actual load distribution from the given routing weight vector
in making each routing decision. There are two levels of routing
granularity, namely, at the packet level, and at the call level. The
packet-by-packet WFR (PWFR) is a packet-level WFR in which
a set of packets is split on a set of (logical) outgoing channels or
links, whereas the call-by-call WFR (CWFR) is a call-connection
level WFR in which a set of connections is split on a set of outgo-



ing channels and all packets belonging to the same connection are
routed on the same path.

The discussion will proceed as follows. Section 3.1 describes
the PWFR algorithm, gives the performance bounds achieved by
PWFR, and examines the application of PWFR to provide service
with guaranteed performance. Section 3.2 outlines the CWFR al-
gorithm and discusses how to incorporate it in multiprotocol label
switching (MPLS) for traffic engineering. Section 3.3 describes
how to couple the basic PWFR and CWFR algorithms so as to
permit a traffic splitter to handle both connection-oriented and con-
nectionless traffic simultaneously.

3.1. A Packet-Based WFR: PWFR

3.1.1. Algorithm

Suppose there is a sequence of packets, namely, Packet 1, Packet 2,
..., to be split on a set of IV (logical) paths or channels. Denote the
size of Packet k by S(k) bytes. The routing weight for Path ¢
is given as p;, where vazl pi = 1. Define the routing weight
vector as p = (p1 p2 pn). Let WP(k) and WP(k)
respectively be the expected workload (in bytes), based on p;, and
the actual workload (in bytes) to be sent on Path 3, just after the
routing decision for the gt packet has been made. Without loss
of generality, we assume p; > 0 and define:

Wip(o) = Wip(o) =0

forallz =1,2,...,N.
For an idealized load sharing performed by a GLS traffic split-
ter,

k
WP(k) =pi- > S3)
ji=1

where:=1,2,...,N.

By the conservation of traffic, there is neither creation nor de-
struction of traffic when a routing decision is made by any traffic
splitters. This means that the total traffic to be routed by all paths
is independent of what traffic splitter is chosen. Therefore,

= Z S(5)

The idea of PWFR is to simulate GLS as closely as possible,
with the constraint that each packet is transmitted on a path as a
whole. The assignment of a complete packet to a path may cause
a transient load imbalance with respect to the targetted routing
weight vector. That is, some paths may be fed more traffic than
expected temporarily while other paths may have less, after the
routing decision for a certain packet, say Packet (k — 1), is made.
Those paths fed with more traffic than expected have the tendency
of not having the next packet, i.e. Packet k, routed on them. How-
ever, if Packet k is large and an overloaded path has a large routing
weight, it may still be preferable to send the packet on this over-
loaded path. Therefore, both the current level of load imbalance as
well as the size of the next successive packet are required for the
traffic splitter to make the next routing decision.

To quantify the above selection criterion, a metric is introduced
to measure the traffic underload on a path. The residual workload

N N

Z Wip(k) = Z Wip(k)

i=1 =1

308

—

procedure PWFR_Packet(Packet )
begin
S =~ Packet.size
for each path i from 1 to N
Rie R'+p; S
choose a path j such that R;’ is maximized
place Packet to the output queue of Path j
Ri< RI-S

end.

“ Ties are broken by a path with the largest routing weight, and,
if still unresolved, the smailest path identification number.

Figure 3. The PWFR algorithm.

of Path ¢, where ¢ = 1,2,..., N, just before the routing decision
for Packet k is made, Rf (k), is defined as the amount of work (in
bytes) that should be fed on Path ¢ in order to achieve the expected
workload W7 (k). In other words,

wr(1) ifh=1,
WP(k) — WP(k —1) otherwise.

R} (k)

and hence
N
> RP(k) = S(k)
i=1

We use R(k) to measure the traffic underload on Path 1, just
before the routing decision of Packet k is made. If R?(k) > 0,
Path ¢ has been injected with less traffic than expected, and hence
Packet k can be sent on this path. On the other hand, if RY (k) < 0,
Path 7 has too much traffic being routed on it and hence Packet k&
should not be transmitted on this path. In other words, R? (k) pro-
vides an indicator to the traffic splitter for deciding which path
Packet k should be transmitted on. Packet k is to be sent on Path j
when R? (k) is maximized along all participating paths. Ties are
broken by a path with the largest routing weight, and, if still un-
resolved, the smallest path identification number. The complete
PWFR algorithm is summarized in Figure 3.

3.1.2. Performance Bounds

A rraffic splitting algorithm is deterministically fair if, for any se-
quences of packets to be dispersed, the absolute difference be-
tween the actual workload and the expected workload (in bytes)
allocated to each path is always bounded by a finite constant. This
means that any deterministically fair traffic splitter attempts to ap-
proximate GLS such that the workload deviation on every path is
limited by a certain constant. In this section, we are going to show
that, if all packets are bounded in sizes, PWFR is a deterministi-
cally fair traffic splitting algorithm.

Lemma 2 For every positive integer k, there exists a positive
residual workload on some active Path i just before the routing



decision for a positive-size Packet k is made. That is,
RP(k) >0
forsomei € {1,2,...,N}.

Lemma 3 For every positive integer k, the actual workload allo-
cated to Path i cannot exceed the expected workload by an amount
equal to or more than the maximum packet size Smax. That is,

WP (k) — WP(k) < Smax
wherei =1,2,...,N.

Lemma 4 For every positive integer k, the actual workload al-
located to Path i cannot lag behind the expected workload by an
amount equal 1o or more than (N — 1) - Smax, where N is the
number of paths and Smax is the maximum packet size. That is,

WP(k) — WP(k) < (N —1) - Smax
wheret1=1,2,...,N.

Theorem 1 Given that all packets are bounded in sizes, PWFR is
a deterministically fair traffic splitting algorithm.

In practice, the routing weight vector may change with time.
This means that the routing weight vector when Packet k arrives
may be different from that when Packet (k + 1) arrives, for some
positive integer k. It is easy to show that the lemmas and theorem
in this section still hold when the routing weight vector changes
between any two successive packet arrivals as their proofs do not
require any specific relationship among routing weights.

3.1.3. Provision of Guaranteed Performance Service

Traditionally, the Internet can only provide a best-effort delivery
service. To remedy this deficiency, a guaranteed quality of service
(QOS) architecture [25] has been proposed. Weighted fair queue-
ing (WFQ) [8], also known as packet-by-packet GPS (PGPS) [23],
can be employed, as a queueing discipline, in every participat-
ing network router to provide firm bounds on end-to-end packet
queueing delays, when packets within the same flow are all sent
on a single path. In this section, we show that, with the application
of PWFR, the provision of guaranteed QOS can be extended to
cases where multiple paths are utilized simultaneously to transmit
packets which belong to the same flow.

The following lemma shows that, when a leaky bucket con-
strained traffic source is divided on a set of paths by a PWFR traf-
fic splitter, the offered workload to each path is also leaky bucket
constrained.

Lemma 5 Suppose a traffic source is constrained by a leaky
bucket with parameters (o, p), where o and p represent the max-
imum size of the bucket token pool and the average token genera-
tion rate respectively. Let Smax be the maximum packet size. If the
traffic source is fed into a PWFR traffic splitter, a dispersed sub-
Sflow to be routed on Link i, where 1 = 1,2, ..., N, is constrained
by another leaky bucket with parameters (o, p;), where

oi = pi ¢ + Smax
pi =pip

309

Compared with Lemma 1, a PWFR traffic splitter requires an
expansion of the bucket token pool by the maximum packet size
to constrain a dispersed sub-flow. This means that a PWFR traffic
splitter may give a dispersed sub-flow with a larger burstiness than
the one outputted from the idealized GLS traffic splitter. Yet, the
difference can become insignificant if a traffic source is very bursty
in nature (with a large o). This is generally true for multimedia
traffic found in the current Internet.

Based on the result from Lemma 5, we can derive performance
bounds for the provision of guaranteed QOS service using multiple
paths for a single flow, which is leaky bucket constrained by the
parameters (o, p). The performance bounds are useful as they can
be adopted to routing policed traffic with end-to-end QOS guaran-
tees, such as in [22], with the extension of supporting the concur-
rent use of multiple routes. Further research is needed to devise an
efficient and practical algorithm for QOS multipath routing.

Denote by g: (where g; > p:), hi, Cij, and (i;, respectively,
the reserved bandwidth on Path ¢, the number of hops for Path ¢,
the link capacity at the jth hop for Path ¢, and the propagation
delay at the j[h hop for Path ¢. It can be shown [29] that the de-

lay bound for Path ¢, D;(p;, g;), the delay jitter bound for Path ¢,

Ji(pi, gi), and the buffer space requirement at the jth

for Path 7, B;;(p:), respectively, can be written as:

hop router

R S hi /S

Di(pi, g:) = Z—=5 A% + 5700 (FHAX 4 ¢5)
o N o;+h; S X

Ji(pi, gi) = =——;-nax

Bij(pi) = oi + j Smax

Denote the

g= (9 9
computed as:

reserved bandwidth vector by
gn). The end-to-end delay bound can be

D(p, g) = maxiZy(D;(pi, g:))
and the end-to-end delay jitter bound can be calculated as:
J(p,g) = D(p,g) — min/Z, (Di(pi, g:) — Ji(ps, 9:))

Li (S'max

Cij

= D(p,g) — min/_, ( +Gij))

=1
3.2. A Call-Based WFR: CWFR

PWEFR can closely imitate GLS so that the actual workload
allocated to any one path will exceed the expected workload al-
located to that path by no more than the maximum packet size.
However, the major drawback of using multiple paths for trans-
mitting a single flow of packets is that these packets may arrive
at the destination out of order, thereby causing a substantial per-
formance deterioration for some protocols, such as TCP which is
commonly deployed in the Internet. Thus, it is necessary to devise
a simple flow-based load sharing algorithm, known as CWFR, to
allow using only one path to send packets of the same flow, as well
as to mimic GLS as closely as possible.

3.2.1. Algorithm

The idea of CWFR is to distribute a set of connections to a set of
paths such that the workload allocated to each path is as close to



the expected workload as possible. Suppose there is a set of con-
nections, namely Connection 1, Connection 2, ..., to be distributed
on a set of N (logical) paths or channels. Connections may have
different characteristics. For example, Connection 1 may be es-
* tablished at a time different from that of Connection 2. Besides,
Connection 1 may have a longer holding time or larger bandwidth
requirement than that of Connection 2. To facilitate a fair dis-
tribution of connections to the set of paths, we assume that the
bandwidth requirement of each connection, such as its equivalent
bandwidth or average bandwidth needed, is known a priori, or can
be estimated (such as according to what application it is to sup-
port), during the call establishment phase.

The algorithm works as follows. Suppose each call has a finite
bandwidth requirement. Connection k needs a bandwidth require-
ment of Q(k) units from the captioned network node. If a call
is routed on a certain path or channel away from that node, the
needed bandwidth for this call is reserved on that path. When the
node receives a call establishment request from an upstream node,
it needs to decide which of the N outgoing channels is to be used
for routing the call. The decision is based on the reserved band-
width on each channel during the time the request is made, as well
as the bandwidth requirement for the incoming call. When a node
receives a call termination request, it will release all bandwidth
reservations corresponding to that call.

Define W¢ (k) as the reserved bandwidth on Path i just before
Connection k is established. The total reserved bandwidth for all
calls, including the incoming one, on all outgoing channels at the
time when Connection k is established can be computed as:

N
A(k) =Y Wi k) + Qk)
=1

To enjoy the desired call-level load sharing, we hope that the
total reserved bandwidth can be split according to the routing
weight vector p = (p1  p2 pn), where p; is the rout-
ing weight for Path ¢, and Z«N=1 p: = 1. Denote by W (k) the
expected reserved bandwidth on Path ¢ at the time when Connec-
tion k is made. This means that, for every positive integer k and
i1=1,2,...,N,

Wi(k) = p: A(k)

The bandwidth deviation on Path ¢, where ¢ = 1,2, ..., N, just
before the routing decision for Connection k is established, RS (k),
is defined as the amount of bandwidth that should be reserved on
Path ¢ in order to have a reserved bandwidth equal to the expected
reserved bandwidth on Path ¢. Thus, the bandwidth deviation on
Path ¢ can be written as:

RS (k) = W (k) — Wi (k)

forallk =1,2,....

We use the value of R{(k) to measure the level of load imbal-
ance on Path ¢, just before the routing decision of Connection k is
made. Similar to the argument made for the PWFR algorithm, if
R§(k) > 0, Path ¢ is underloaded and Connection k can be routed
on this path. On the contrary, if R{ (k) < 0, Path i is already over-
loaded and Connection k should not be carried on Path z. Connec-
tion k is to be routed on Path j when Rj(k) is maximized along

310

all active paths. Ties are broken by a path with the largest rout-
ing weight, and, if still unresolved, the smallest path identification
number. The complete CWFR algorithm is shown in Figure 4.

-

—
procedure CWFR_Establishment(Call )

begin

Q= Call.bandwidth

N A
A= 27 Wi +Q

i
for each pathi from1to N

<
W, = p, A .

R - -

choose a path j such that R; is maximized "

Call.path < j
end.

b
’ Ties are broken by a path with the largest routing weight, and,
if still unresolved, the smallest path identification number.

procedure CWFR_Termination( Call)
begin

Q = Call.bandwidth

i = Callpath

A

e ¢
W= W; -Q

end.

procedure CWFR_Packet( Packet )
begin
i = Packet.call.path

place Packet to the output queue of Path i
end.

N

Figure 4. The CWFR algorithm.

3.2.2. Incorporation of MPLS for Traffic Engineering

A potential drawback of the CWFR algorithm is that it may be
necessary to maintain states so that a network node knows how to
forward incoming packets corresponding to each call, since calls
are routed individually at each node. It seems that it is not scal-
able with the growing number of flows in the network. However,
with the introduction of label switching techniques like MPLS, the
scalability problem can be alleviated. All flows sharing the same
path segment can be assigned the same flow label so that they can
be switched together. Specific information with respect to a flow
can be referenced from the label stack, which is a last-in, first-out
stack to store a set of label stack entries. A label stack entry con-
tains a flow label which can be employed by a node to choose the
path a packet should be forwarded to. When a packet arrives at
a node at the end of a path segment, the top-most label stack en-
try will be used to determine the next hop label forwarding entry,
which contains information to determine the packet’s next hop and
the operation to perform on the packet’s label stack.



Figure 5. A seven-node network.

The forwarding process can be illustrated by a seven-node net-
work, as shown in Figure 5. Consider two group of flows. The
path taken by the first and second groups of flows, respectively,
are: Node 1 — Node 3 — Node 4 — Node 5 — Node 6, and
Node 2 — Node 3 — Node 4 — Node 5 — Node 7. With the use
of MPLS, all packets belonging to the first group of flows carry
A as the flow label when they are sent from Node 1 to Node 3.
Similarly, all packets belonging to the second group of flows carry
B as the flow label when they are sent from Node 2 to Node 3.
At Node 3, the label 4 or B is pushed into the label stack and the
flow label is replaced by C, since the two groups of flows begin to
share the same path segment. At Node 4, packets within the two
flow groups are switched and forwarded to Node 5, and the flow
label is taken over by C’. When such a packet arrives at Node 5,
if it carries a flow label C’, another flow label is popped from the
label stack to determine which path and flow label are to be used
next. If the label A is popped, the packet is assigned with the flow
label D and forwarded to Node 6. If the label B is popped, the
packet is assigned with the flow label E and forwarded to Node 7.

With the application of flow label and label stack, the traffic
splitter does not need to maintain states for every active flow. In-
stead, it needs to maintain states for each participating flow la-
bel. Since a flow label may be shared by many flow groups, the
number of flow labels maintained at each network node can then
be dramatically reduced. Thus, the system is as scalable as other
label-switching networks, such as Asynchronous Transfer Mode
(ATM) which employs virtual path/virtual channel concept for per-
formance enhancement.

3.3. Combining PWFR and CWFR

Generally, packet-switching networks need to handle both
connection-oriented and connectionless traffic. We may need to
couple the basic PWFR and CWFR algorithms to obtain the com-
bined WFR algorithm.

When a packet is to be forwarded to another node, it is nec-
essary to determine whether it belongs to connectionless traffic or
connection-oriented traffic. If the former applies, the PWFR al-
gorithm can be used directly. Otherwise, the route for that packet
has been pre-determined and this information should be retrieved
accordingly. However, routing a packet on a pre-determined path
may cause even more load imbalance among a set of paths. To
alleviate the impact to load distribution, the residual workloads
on all participating paths are incremented by their expected work-
loads contributed from the packet. The residual workload on the
pre-determined path is then reduced by the size of that packet. The
combined WFR algorithm is depicted in Figure 6.

311

procedure MWEFR_Packet(Packet )
begin
if ( Packet.class is connectionless )
PWFR_Packet( Packet )
else { Packet.class is connection-oriented }
S = Packet.size
i <= Packet.call.path
for each pathj from 1to N
Rl< R +p; s
CWFR_Packet( Packet )
= R'-s
end.

Figure 6. The combined WFR algorithm.

4. Performance Evaluation

In this section, we first outline a set of traffic splitting algo-
rithms for performance studies. A performance metric is then de-
fined for comparing various splitting algorithms. Afterwards, we
briefly describe the characteristics of the traffic traces used for the
simulation, and finally, we examine the simulation results of the
proposed traffic splitting algorithms.

4.1. Traffic Splitting Algorithms

We study three basic traffic splitting algorithms, namely,
weighted fair routing (WFR), generalized round robin routing
(GRR), and probabilistic routing (PRR). The WFR approach,
which is described in Section 3, simulates generalized load shar-
ing (GLS) as closely as possible, subject to the granularity con-
straint imposed. The packet-by-packet WFR (PWFR) simulates
GLS with the limitation that packets are routed as a whole, while
the call-by-call WFR (CWFR) simulates GLS in such a way that
all packets of a single flow follow the same transmission path.

GRR distributes packets or calls to each route such that the
number of packets or calls allocated to each path relative to the
sum on all paths is as close to its routing weight as possible. The
packet-by-packet GRR (PGRR) splits packets to each path in a
cyclical fashion so that the arrival instants of any two packets to
each path is as uniform as possible. The call-by-call GRR (CGRR)
dispatches an incoming call to a path such that the resulting load
distribution, in terms of the number of active calls, to a set of paths
is closest to the routing weight vector. For dealing with mixed
traffic, GRR performs adjustments on PGRR just as PWFR does.
Indeed, a way to implement GRR is to apply WFR by setting all
packet sizes and bandwidth requirements of all calls to one unit,
or any other constant.

PRR spreads out packets or calls to each route in random such
that the chance for routing a packet or a call to a specific path is
equal to the routing weight for that path. According to the routing
weight vector, the packet-by-packet PRR (PPRR) divides pack-
ets at random, whereas the call-by-call PRR (CPRR) routes calls



at random. Indeed, PRR is equivalent to a perfect hashing rout-
ing scheme, which provides a performance benchmark to all other
hashing-based traffic splitting algorithms. A list of direct hashing
and table-based hashing schemes for call-based traffic splitting can
be found in [5].

4.2. Performance Metric

Our performance metric for a tratfic splitter is the mean squared
workload deviation, which measures the variation of the actual
workloads allocated by the traffic splitter to a set of IV paths from
the expected ones distributed under GLS. A good traffic split-
ting algorithm should divide traffic according to the given routing
weight vector, and hence it should be able to keep the value of the
mean squared workload deviation as small as possible.

Suppose a set of M packets, namely, Packet 1, Packet 2, ...,
Packet M, which belong to either connectionless or connection-
oriented traffic, are split on a set of paths. Let WP (k) and WP (k)
respectively be the expected and actual workloads (in bytes) allo-
cated to Path ¢, just after the routing decision for the gth packet
has been made. The mean squared workload deviation for the set
of packets is defined as:

1o (W7 (k) = WP (K))®
MN

E[(W?P —WP)?] = PP

4.3. Traffic Traces

The simulation is based on a set of real packet traces collected
on the MCI Internet Backbone over two trunks, namely, the FIX-
West facility at NASA-Ames (FDDI interface), and the SDSC
OC12mon VBNS connection. A total of six traces, from July 1994
to December 1999, are employed for our simulation studies. The
characteristics of these traffic traces are summarized in Figure 7.

. Duration: # TCP #TCP # non-TCP i #non-TCP

Trace File inSec. i Calls Packets Packets #TCP Bytes Bytes
FXW-19940714 3624 G 121628 | 7680715 2245811 1874271 141 674803 625
FXW-19960918 299 217590 | 3491749 1529 446 1431367056 135232031

125DC-19991115a
125DC-19991115b
125DC-19991215a
125DC-19991215b

5388
6806
4862
4876

435936
451451
418442
509 902

1196674
1250 882
235128
290 316

312679995
281740032
294 629822
360136 635

1573 644 381
1611799302
116 560 362
140277 214

Figure 7. The characteristics of traffic traces.

4.4. Simulation Results

Our simulation experiments are based on a network node which
routes incoming traffic on three outgoing paths. It is sufficient to
only consider three paths as it has been shown [16], under a wide
range of scenarios, that multipath routing is effective in using a
small number of paths, say up to three. The routing weight vector,
p=(p1 p2 ps),hasbeen setsuch that p; = 0 or 0.35. When
p3 = 0, py varies between 0.001 and 0.5, with a total of eleven
data points. Due to symmetry, it is not necessary to perform du-
plicate experiments when p; is greater than 0.5. For instance, the

312

1e+14 T T

" Weightad Fair Routing
Generalized Round Robin Routing
Probabilistic Routing

le+12

1408 |

1e+06 | |

100 > i
0 005 01 015 02 025 03 035 04 045 05
Routing Weight for Path 1

10000

Mean Squared Workload Deviation (Bytes”2)

Figure 8. Workload deviation plot for connec-
tionless traffic with p; = 0.

result of p; = 0.7 is the same as that of p; = 0.3 since, for both
cases, the routing weight of one path is 0.3 and that of another
is 0.7, and thus the results should be the same. Similarly, when
ps = 0.35, p; varies between 0.001 and 0.3, with a total of seven
data points.

Each simulation run is filled with a complete traffic trace, and
the statistics for computing the performance metric are collected
only when the routes for the first 10000 packets have been deter-
mined. For WFR and GRR, a single run is sufficient to determine
the mean squared workload deviation for a certain setting. How-
ever, since PRR involves the use of random numbers, a total of ten
runs have been done to find an average value of the performance
metric, and a 95% confidence interval for each average value of
the metric is also computed. Because of constraints in space, plots
showing similar results are left out and hence only plots corre-
sponding to the trace file “12SDC-19991115a” are presented here.

The results compare the effectiveness of different traffic split-
ters under three different traffic types, namely, connectionless traf-
fic, connection-oriented traffic, and mixed traffic. Connection-
oriented traffic consists of traffic from Transmission Control Pro-
tocol (TCP) connections only, while connectionless traffic comes
from non-TCP connections. Mixed traffic is composed of both
connectionless and connection-oriented traffic. Figure 8 shows the
mean squared workload deviation for connectionless traffic when
the routing weight for Path 3 is 0, i.e. no traffic will be routed
on Path 3. The routing weight for Path 1 varies between 0.001
and 0.5. We see that the mean squared workload deviation when
WER is employed is significantly lower than when GRR or PRR
is used. Obviously, it is due to the fact that WFR aims to minimize
workload deviation each time the route of each packet is assigned.
Though GRR tries to distribute packets to paths as closely to the
routing weight vector as possible, it does not take the dynamics of
packet size into account. PRR routes packets at random and hence
it can be expected that it can split the workload approximately
equal to the expected load distribution over a very long time pe-
riod. This means that, over short time periods, the workload may
be very different from the expected one. Thus, this approach can-
not minimize workload deviation in general.

Figure 9 exhibits the mean squared workload deviation for
connection-oriented traffic when the routing weight for Path 3 is



1e+17 . ,
' Weighted Fair Routing ~—+—
1e+16 | Generalized Round Robin Routing -—-+- ]
" Probabitistic Routing -

1e+15

X,

1e+14
18+13
1e+12
Te+11 |

3
1e+10

1e+09

Mean Squared Workload Deviation (Bytes*2)

HE.

0 005 01 015 02 025 03 035 04 045 05

1e+08

Routing Weight for Path 1

Figure 9. Workload deviation plot for
connection-oriented traffic with p; = 0.

0. We find the mean squared workload deviation when WFR is ap-
plied is generally lower than when GRR or PRR is used. Compar-
ing with the cases for connectionless traffic, its superiority fades
as all traffic within a single call must be transmitted on the same
path once determined. This limits the power of WFR to balance
traffic splitting in proportion to the set of routing weights. More-
over, the average call bandwidth consumed, instead of equivalent
bandwidth, for simplification purposes, is taken as the bandwidth
requirement. This may not be able to properly identify various
call requirements where traffic characteristics vary substantially
tor different calls.

Figure 10 gives the mean squared workload deviation for mixed
traffic when the routing weight for Path 3 is 0. As for connection-
less traffic, the mean squared workload deviation is always the
lowest value when WFR is used. Nevertheless, the level of im-
provement differs with the proportion of connectionless traffic. A
larger proportion of connectionless traffic drives a greater perfor-
mance improvement.

The mean squared workload deviation for connectionless traf-
fic, connection-oriented traffic, and mixed traffic when the rout-
ing weight for Path 3 is 0.35 is similar to cases when the routing
weight for Path 3 is 0, and thus the corresponding plots are omitted
to conserve space.

1e+18 T T
Weighted Fair Routing ———
Generalized Round Robin Routing -
1e+16 F Probabilistic Routing -~

te+14 |
te+12
1e+10 ":’
1e+08 4

1e+08

Mean Squared Workload Deviation (Bytes~2)

10000 N s " s " i
0 005 01 015 02 025 03 035 04 045 05

Routing Weight for Path 1

Figure 10. Workload deviation plot for mixed
traffic with p; = 0.

313

5. Conclusions

In this paper, we have proposed a framework to study how to
effectively perform load sharing in multipath communication net-
works. A generalized load sharing (GLS) model has been devel-
oped to conceptualize how traffic is split ideally on a set of ac-
tive paths. A simple traffic splitting algorithm, called weighted
fair routing (WFR), has been devised at two different granular-
ity levels, namely, the packet level, and the call level, to approx-
imate GLS with the given routing weight vector. The packet-by-
packet WFR (PWFR) mimics GLS by transmitting each packet as
a whole, whereas the call-by-call WFR (CWFR) imitates GLS so
that all packets belonging to a single flow are sent on the same
path. We have developed some performance bounds for PWFR
and found that PWFR is a deterministically fair traffic splitting
algorithm. This attractive property is useful in the provision of
service with guaranteed performance when multiple paths can be
used simultaneously to transmit packets which belong to the same
flow.

A total of six historical Internet backbone traces have been used
in our simulation studies. For each of the traffic trace, we investi-
gated three different scenarios: connectionless traffic, connection-
oriented traffic, and mixed traffic. Connection-oriented traffic con-
sists of traffic from Transmission Control Protocol (TCP) con-
nections only, while connectionless traffic comes from non-TCP
connections. Mixed traffic is composed of both connectionless
and connection-oriented traffic. Our simulation studies, based on
these traffic traces, reveal that WFR outperforms two other traf-
fic splitting algorithms, namely, generalized round robin routing
(GRR), and probabilistic routing (PRR), in all three scenarios.
These promising results can form a basis for designing future
adaptive quality of service (QOS) or constraint-based multipath
routing protocols.

There are several possible extensions to our work, some of
which are listed below:

o devise an efficient algorithm for constraint-based multipath

routing;
o develop an adaptive load sharing architecture for packet-
switching networks.

Acknowledgement

This research is supported in part by the University Grants
Committee, Hong Kong, Area of Excellence in Information Tech-
nology, Grant No. AOE98/99.EG01. We would also like to
thank the United States National Science Foundation Cooperative
Agreement No. ANI-9807479 and the National Laboratory for
Applied Network Research for making their real Internet backbone
packet traces available for our research. Last, but not least, we are
grateful to three anonymous referees for their valuable comments
which assist us in improving the quality of this paper.

References

1] H. Adiseshu, G. Varghese, and G. Parulkar. An Architecture
for Packet-Striping Protocols. ACM Transactions on Com-
puter Systems, Vol. 17, No. 4, pp. 249-287, November 1999.



(2

{31

(4

—

[5

—

(6]

7]

(8]

(91

[10]

391

(12]

(13]

[14]

(15]

[16]

[17]

D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. Mc-
Manus. Requirements for Traffic Engineering Over MPLS.
Request for Comments, RFC 2702, Network Working Group,
Internet Engineering Task Force, September 1999.

D. O. Awduche. MPLS and Traffic Engineering in IP Net-
works. [EEE Communications Magazine, Vol. 37, No. 12,
pp. 42-47, December 1999.

D. Bertsekas and R. Gallager. Data Networks. Second Edi-
tion. Prentice Hall, 1992.

Z. Cao, Z. Wang, and E. Zegura. Performance of Hashing-
Based Schemes for Internet Load Balancing. Proceedings of
IEEE INFOCOM 2000, Vol. 1, pp. 332-341, Tel Aviv, Israel,
26-30 March 2000.

S. N. Chiou and V. O. K. Li. Diversity Transmissions in a
Communication Network with Unreliable Components. Pro-
ceedings of IEEE ICC ’87, Vol. 2, pp. 968-973, Seattle, WA,
USA, 7-10 June 1987.

J. H. Déjean, L. Dittmann, and C. N. Lorenzen. String Mode
— A New Concept for Performance Improvement of ATM
Networks. IEEE Journal on Selected Areas in Communica-
tions, Vol. 9, No. 9, pp. 1452-1460, December 1991.

A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. Internerworking: Re-
search and Experience, Vol. 1, No. 1, pp. 3-26, Septem-
ber 1990.

J. Duncanson. Inverse Multiplexing. /[EEE Communications
Magazine, Vol. 32, No. 4, pp. 34-41, April 1994.

L. Fratta, M. Gerla, and L. Kleinrock. The Flow Deviation
Method: An Approach to Store-and-Forward Communica-
tion Network Design. Networks, Vol. 3, pp. 97-133, 1973.

P. H. Fredette. The Past, Present, and Future of Inverse Mul-
tiplexing. IEEE Communications Magazine, Vol. 32, No. 4,
pp- 42-46, April 1994.

R. G. Gallager. A Minimum Delay Routing Algorithm Using
Distributed Computation. /EEE Transactions on Communi-
cations, Vol. COM-25, No. 1, pp. 73-85, January 1977.

E. Gustafsson. Traffic Dispersion in ATM Networks.
Ph.D. Dissertation, Royal Institute of Technology, TRITA-
IT R 97:03, Kista, Sweden, June 1997.

J. van der Lande. Inverse Multiplexing Over ATM: Broad-
band Access For Less. Computer Technology Review,
Vol. 18, No. 12, pp. 24,26, December 1998.

T. T. Lee, S. C. Liew, and Q.-L. Ding. Parallel Communi-
cations for ATM Network Control and Management. Per-
formance Evaluation, Vol. 30, No. 4, pp. 243-264, Octo-
ber 1997.

K.-C. Leung and V. O. K. Li. A Resequencing Model for
High Speed Networks. Proceedings of IEEE ICC ’99, Vol. 2,
pp. 1239-1243, Vancouver, BC, Canada, 6-10 June 1999.

K.-C. Leung and V. O. K. Li. Flow Assignment and Packet
Scheduling for Multipath Networks. Proceedings of IEEE
GLOBECOM 99, Vol. 1 (V0la), pp. 246-250, Rio de Jane-
rio, RJ, Brazil, 5-9 December 1999,

314

(18]

[19]

[20]

[21]

[22]

(23]

(24)

[25]

[26]

[27]

(28]

[29]

V. O. K. Li and W. Liao. Distributed Multimedia Systems.
Proceedings of the IEEE, Vol. 85, No. 7, pp. 1063-1108,
July 1997.

N. F. Maxemchuk. Dispersity Routing. Proceedings of IEEE
ICC 75, pp. 41-10 - 41-13, San Francisco, CA, USA,
June 1975.

N. F. Maxemchuk. Dispersity Routing in High-Speed Net-
works. Computer Networks and ISDN Systems, Vol. 25,
No. 6, pp. 645-661, January 1993.

N. F. Maxemchuk. Dispersity Routing on ATM Networks.
Proceedings of IEEE INFOCOM 93, Vol. 1, pp. 347-357,
San Francisco, CA, USA, 28 March - I April 1993.

A. Orda. Routing with End-to-End QoS Guarantees in
Broadband Networks. IEEE/ACM Transactions on Network-
ing, Vol. 7, No. 3, pp. 365-374, June 1999.

A. K. Parekh and R. G. Gallager. A Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Single-Node Case. IEEE/ACM Transactions
on Networking, Vol. 1, No. 3, pp. 344-357, June 1993.

A. K. Parekh and R. G. Gallager. A Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Multiple Node Case. IEEE/ACM Transac-
tions on Networking, Vol. 2, No. 2, pp. 137-150, April 1994.

S. Shenker, C. Partridge, and R. Guerin. Specification
of Guaranteed Quality of Service. Request for Comments,
RFC 2212, Network Working Group, Internet Engineering
Task Force, September 1997.

C. B. S. Traw and J. M. Smith. Striping Within the Network
Subsystem. IEEE Network, Vol. 9, No. 4, pp. 22-32, July-
August 1995.

C. Villamizar. OSPF Optimized Multipath (OSPF-OMP).
Internet Draft, Internet Engineering Task Force, Work in
Progress, 18 August 1999.

S. Vutukury and J. J. Garcia-Luna-Aceves. A Simple Ap-
proximation to Minimum-Delay Routing. Computer Com-
munication Review, Vol. 29, No. 4, pp. 227-238, Octo-
ber 1999.

H. Zhang. Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks. Proceedings of the
IEEE, Vol. 83, No. 10, pp. 1374-1396, October 1995.



