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Abstract

In this paper, we consider a proportional delay model
for Internet differentiated services. Under this model, an
ISP can control the “spacing” of waiting times between
different classes of traffic. Specifically, the ISP tries to en-
sure that the average waiting time of class

�
traffic relative

to that of class
�����

traffic is consistently a specifiable ra-
tio. If the ratio is less than one, the ISP can legitimately
charge users of class

�
traffic a higher tariff rate (compared

to the rate for class
�����

traffic), since class
�

users consis-
tently enjoy better performance than class

���	�
users. We

use time-dependent priority scheduling to realize the pro-
portional delay model. We formally characterize the fea-
sible regions in which given delay ratios can be achieved.
Moreover, a set of scheduling parameters for obtaining the
desired delay ratios can be determined by an efficient con-
trol algorithm. Experiments are carried out to illustrate
the short-term, medium-term and long-term relative wait-
ing time performances for different service classes.

1 Introduction

The Internet is being used for many different user ac-
tivities, including emails, software distribution, video and
audio entertainment, e-commerce, and real-time games.
Although some of these applications are designed to be
adaptive to available network resources, they still expect
different levels of service from the network in order to
have good performance. Therefore, there is a growing need
to provide an alternative Internet service model, as com-
pared to the conventional one-size-fits-all best-effort ser-
vice model.

The major problem about the best-effort service model
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is that it treats all packets from different Internet appli-
cations on an equal basis. One approach to solving this
problem is the Integrated Services (IntServ) model pro-
posed by the IETF. IntServ is inherently a reservation based
approach. To achieve predictable performance, an appli-
cation is expected to reserve resources, such as network
bandwidth and buffers, using a protocol like RSVP [5].
This raises two important deployment issues. First, all the
routers along an end-to-end network path must be RSVP-
capable in order to realize IntServ benefits. Second, a
router has to manage per-flow state and perform per-flow
processing. This makes it difficult for IntServ to scale well
to tens of thousands of network flows. Although there are
proposals to alleviate these difficulties [3, 13], designing
a scalable IntServ model is still an open and challenging
problem.

Recently, another service model known as Differenti-
ated Services (DS) is proposed by the IETF and has re-
ceived a lot of attention [8]. Under the DS model, traffic
flows are aggregated and identified as classes. Since the
number of DS traffic classes is expected to be far fewer than
the number of flows in IntServ, DS is much less susceptible
to the scalability problem. Rather than providing end-to-
end performance guarantees for individual flows like the
IntServ, the DS service objective is to differentiate among
classes of traffic using per-hop packet forwarding behav-
iors. In general, there are two approaches for delivering
the DS service model: absolute differentiated services and
relative differentiated services.

For absolute DS, the goal is to achieve performance
measures similar to those in the IntServ model, but without
keeping per-flow state within routers. Two most prominent
schemes for absolute DS are premium services [9] and as-
sured services [1]. Premium services offers to the user a
performance level that is similar to that of a leased line,
provided that the user’s traffic satisfies an agreed upon traf-
fic profile (e.g., the traffic is below some specified bit rate).
Assured services, on the other hand, provides a way to con-
trol packet dropping for different classes of traffic. Specif-



ically, at the network edge, packets are classified as either
in or out class, according to whether they are within or out-
side a traffic profile. These two classes have different drop-
ping priorities. When a router becomes congested, it starts
by dropping the out packets first. If congestion persists,
then the router will start dropping both in and out packets.
Under all traffic loads, however, out packets are dropped
with a higher probability than in packets. In [6, 12], the
authors present some elegant mathematical models for an-
alyzing the performance of the absolute DS service model.
In [14], the authors illustrate that in order to provide service
assurance with coarse spatial granularity and high network
utilization, some form of route pinning is required.

Relative differentiated services is proposed in [2].
Rather than providing absolute performance guarantees for
different classes of traffic, the goal is to give better perfor-
mance to class

�
traffic than class

� � �
traffic with a fixed

quality spacing. If the goal is consistently achieved, then
class

�
users will see better performance than class

� � �

users. In return, the ISP can legitimately charge class
�

traffic a higher tariff rate than class
� � �

traffic. In [2],
the authors propose two algorithms, called BPR and WTP,
respectively, for implementing proportional delay differen-
tiation. For WTP scheduling in particular, they claim that
in order to achieve a delay ratio of � between two traffic
classes, the corresponding service parameters should also
be set to have ratio � . As we will illustrate, however, the
WTP control parameters should in fact depend on the distri-
bution of traffic loads. We also formally illustrate the con-
ditions under which given delay ratios are feasible. Specif-
ically, our paper addresses the following questions:

� Given desired waiting time ratios for
�

traffic classes,
under what conditions (e.g., traffic load distribution
for the

�
classes) can feasible WTP control parame-

ters be found to achieve the ratios?

� Given that the waiting time ratios are feasible, how
can one obtain the WTP control parameters that will
achieve the waiting time ratios?

� Given the obtained control parameters, can we main-
tain the waiting time spacings at different time scales?

The rest of the paper is organized as follows. In Sec-
tion 2, we review proportional differentiated services as
described in [2]. In Section 3, we characterize and an-
alyze the performance of a time-dependent-priority algo-
rithm in achieving the proportional delay differentiation.
Specifically, we discuss the conditions under which con-
trol parameters for the TDP algorithm exist and how they
can affect a given set of quality spacings. In addition, we
present an efficient iterative method for finding the values
of these control parameters when they exist. In Section 4,

we present experimental results that illustrate the perfor-
mance of our methods. In particular, we compare waiting
time spacings achieved between different classes of traffic
using the control parameters in [2] versus using those ob-
tained by our proposed iterative method. We also present
waiting time spacing results under different time scales.
Lastly, conclusion is given in Section 5.

2 Background

We further review the proportional differentiation ser-
vice model as it is proposed in [2]. The model has two
objectives. First, it should provide consistent service dif-
ferentiation between classes, in that a class with higher ad-
vertised quality should consistently outperform a class with
lower advertised quality. Second, it should allow the qual-
ity spacings between classes to be adjusted based on pric-
ing and other criteria. For example, it should be possible to
configure the average packet delay of a higher quality ser-
vice class to be, say, 80% the delay of a lower quality class.
Further, the authors stipulate that these two goals should be
met even for sharing over “short” timescales.

The authors propose two scheduling algorithms for ap-
proximating the proportional DS model for delay differen-
tiation under heavy-load conditions. The first one, called
the backlog-proportional rate (BPR) scheduler, is based
on GPS, but with the modification that the class service
rates are dynamically adjusted so that they are ratioed pro-
portionally to the corresponding ratios of measured class
loads. The algorithm is shown to exhibit pathological
sawtooth-type delay variations over short timescales.

The second algorithm, called the waiting-time pri-
ority (WTP) scheduler, is based on Kleinrock’s Time-
Dependent-Priorities algorithm [10]. Specifically, the pri-
ority of a packet in flow

�
at time � is proportional to the

waiting time of the packet at time � , where the propor-
tionality constant, denoted ��� (using the notation in [2]),
is a service parameter for

�
. Using simulations, the au-

thors show that the relative average delay experienced by
two flows, say

�
and � , in a WTP server has value close to

� �	� ��
 , for monitoring timescales as short as a few tens of
packet transmission times. Hence, WTP approximates the
proportional delay differentiation model under heavy-load
conditions. The reason it is an approximation is that, on one
hand, it is known that consistent quality spacing cannot be
achieved over timescales that are arbitrarily short. On the
other hand, no conditions are given in [2] to assess fea-
sibility given a certain value of the monitoring timescale.
Hence, the notion of “short” timescales remains imprecise.

Given the lack of a complete characterization of the
proportional DS model in [2], we set out to further eval-
uate its theoretical and experimental properties in this pa-
per. Our objectives are (1) to further contribute to the un-



derstanding of feasibility conditions for achieving propor-
tional delays, and (2) when it is feasible, to derive schedul-
ing parameters that can achieve the property. We mainly fo-
cus on the WTP algorithm, which was shown to be highly
effective in [2]. Since WTP is derived from Kleinrock’s
work [10], we follow similar analysis to further character-
izing the feasibility for achieving proportional delays. We
found that, independent of the timescale parameter, system
utilization impacts feasibility. Further, we show that when
system utilization varies significantly (i.e., the system is
not always heavily loaded as assumed in [2]), the per-flow
WTP service parameters should be dynamically adjusted
to maintain proportional delay differentiation whenever it
is feasible.

3 Characterization and Performance Analy-
sis

In this section, we summarize some results for time-
dependent priority (TDP) scheduling. We first characterize
a necessary and sufficient condition for a given delay spac-
ing to be feasible under TDP for two traffic classes. We
then extend the characterization to TDP for

�
classes. We

also present an iterative method for obtaining the feasible
control parameters.

TDP is a non-preemptive packet scheduling algorithm
which provides a set of control variables

� ��� ��� ��� �
where � � ��� � �
	 �����
��� �
�

and
� � dictates the instan-

taneous priority of class
�

packets. Specifically, if a tagged
class

�
packet arrives at time � , then its priority at time �

(for ����� ), denoted by � ��� ��� , is

� � � ����� � � � ��� � ��� (1)

Let
� � � ��� denote the number of class

�
packets waiting in

the queue at time � . If the server is ready to transmit a
packet, it will choose a packet from class

���
where

� � � � ����� !#"%$�
& � &'�)( � � � ��� and
� � � ���+*,�.- � (2)

Whenever a tie for the highest priority occurs, the tie is
broken by an FCFS rule. If there is no packet in the system,
then the server will be idle and it will be activated by any
newly arriving packet. Notice that in the TDP scheduler, a
class

�
packet increases in priority at a faster rate (

� � ) than
packets of any class � , where �0/ �

.
Assume that the arrival process of class

�
packets is

Poisson with rate 1 � and let 2 � ( 2 	
� ) be the first (second)

moment of class
�

packet service times, then the system
utilization 3 of a TDP server is equal to 4

�
�65 � 3 � where3 � �71 � 2 � . Kleinrock derives a closed-form expression for

the average long-term waiting time for class 8 packets. The

closed-form expression is given as

9;: �
< 9)= � � � � 3>�@? � 4

:BA �
�C5 � 3 � 9 � < � � � � � � � : �@?

� � 4
�
�C5 :
D � 3 � < � � � � : � � �E�F? (3)

for
� � � �HG>�
�C�C�6� � , where

9 =
is the expected residual ser-

vice time,
9 = �

�	 4
�
�65 � 1 � 2 	

� . It is interesting to note
that Kleinrock derives the above expression by assuming
that packet service times are exponentially distributed. In
[7], the authors illustrate that the closed-form expression
in Equation (3) is also valid for any general service time
distribution.

One attractive feature about the TDP scheduler is that
if one wants to maintain certain proportional differentia-
tion of waiting times between different classes of traffic,
one can simply adjust the control parameters

� � ’s so as to
achieve the desired waiting time spacings. Let � �JI 
 be the
waiting time ratio between class

�
and class � , that is

� �KI 
 �
9 �9 
 �

In this paper, we will address the following important ques-
tions:

1. Given the waiting time ratio requirements for all
classes � �KI � D �

(where
� � � ��G>���
���
� � ���

), under what
conditions of 3 � ’s does a solution for

� � ’s exist?

2. Given 3 � , the traffic loads of all classes, how to obtain
the

� � values so that the ratios
9 � � 9 � D �

are equal to
our target values of � �JI � D �

?

To understand the problem, we start with a simple case of
two traffic classes. We then go on to solve the general prob-
lem of

�
traffic classes.

Theorem 1 For two classes of traffic, let � � I 	 be the re-
quired ratio of the average waiting times of class one traf-
fic to that of class two traffic. To achieve the specified ratio� � I 	 , the necessary and sufficient condition is for the system
utilization 3 to satisfy

� �
�

L�M@N O /�30/ �
.

Proof: First, 3�/ �
is required so that the system is stable.

According to Equation (3), packets of the two classes have
average waiting times of

9 � �
< 9 = � � � � 3>�@?

� � 3 	 < � � � � � � � 	 �@?9 	 � < 9 = � � � � 3>�@? � 3 � 9 � < � � � � � � � 	 �F? �
By substituting

9 �
into

9 	
, we have

9 	 � < 9 = � � � � 3.�F?
� � 3 < � � � � � � � 	 �F?
� � 3 	 < � � � �
� � �
	 �@? �



The average waiting time ratio between class one and class
two is given as 9 �

9 	 �
�

� � 3 < � � � � � � � 	 �@? � (4)

Let us denote the target ratio of the average waiting times
between class one traffic and class two traffic as � � I 	 �9 � � 9 	

, then we have

3 �
� 	

� 	 � � �
�
� �

�

� � I 	�� (5)

Since � / � � / � 	
, this implies that � O� O A � M * �

. Therefore,
30* � �

�
L M@N O

Remarks: The implication for the above theorem is that
in order to achieve a specified ratio � � I 	 , we need to have
enough packets arriving to the system. For example, if
the requirement is � � I 	 � � � , then the system has to be
at least 90% utilized so as to achieve the desired waiting
time spacing. In other words, if the system utilization is
less than 90%, we cannot achieved the � � I 	 � � � spacing
using WTP.

We make two observations from the above theorem.
First, the ratio of the average waiting times does not solely
depend on

� 	 � �
�
, but rather, depends on the system uti-

lization also. Only when 3�� �
, will setting the control

parameters
� 	 � � � � � � I 	 achieve the desired waiting time

spacing. Secondly, if the system utilization is known, we
can adjust

� �
and

� 	
such that the resulting waiting time ra-

tio will be equal to our target value � � I 	 . Below, we will
explain how to choose the appropriate values for

� � ’s.

Corollary 1 If the system utilization 3 satisfies the nec-
essary and sufficient condition in Theorem 1, then

� � � �

and
�
	 � 3 � �K3 � ��� �

L MKO � can achieve the specified ratio� � I 	 .

Proof: Please refer to our technical report [4].

In summary, to satisfy a specified system performance
requirement given as

9 � � 9 	 � � � I 	 , we should measure
the system utilization and set the parameters

� �
and

� 	
ac-

cordingly. Then the long term average waiting time ratio
of class one traffic to class two traffic will be equal to the
target value of � � I 	 , provided that 3 is within the feasibility
region � � � � � � � I 	 � � ? .

For the general case of
�

classes, the problem be-
comes very complicated because to find values of the con-
trol parameters ( � ��- ’s, we need to solve Equation (3),
which is a system of

�
non-linear equations. Neverthe-

less, we can calculate
9 � by using the conservation law

principle, provided that the configuration of system ( 3 � and9 =
) is known.

The conservation law [10] states that if a scheduling
discipline is independent of the service time of jobs (which
is the case for the TDP scheduler), then the weighted av-
erage of the waiting times of all classes is invariant, and
it is equal to the average waiting time of a M/G/1 system.
Mathematically, the relationship is��

�C5 � 3 �
3

9 � �
9)=
� � 3 � (6)

Let us define � � = � �JI � D � � � D � I � D 	 �
��� � � A � I � =
9 � � 9 �

and
express

9 � � � � 9 �
. Substituting this expression of

9 � in
Equation (6), we have

9 =
� � 3 �

�

3
��
�C5 � 3 � � � 9 � �

Therefore, we can express

9 : � � : 3 9)=
� � 3
	 ��

�C5 � 3 �	� ��� A �
for 8 � � ��G+���
� � � (7)

From the above equations, we observe that the only un-
known in Equation (3) is the vector 
�� < � � � �
	 � �
��� � �
� ? .
Now, putting all

� :
’s in Equation (3) on the left hand side,

we have

� :��� 9;:
��

�65 :
D � 3 �� ���� �
�
� : 	 :BA ��

�65 � 3 � 9 � � ���
�

9 =
� � 3

�

: A ��
�65 � 3 � 9 � � �� � � ��

�65 : D � 3 � �� 9 : � (8)

Letting�
� 8�� � 9 :

��
�C5 :
D � 3 �� � ��� � 8'� �

:BA ��
�C5 � 3 � 9 � � � �� � 8����

9 =
� � 3

�

:BA ��
�C5 � 3 � 9 � � �� � � ��

�C5 :
D � 3 � �� 9 : �

we have
�

� 8�� � : � � � 8'�� : � � � 8�� 8 � � ��G>���
��� � � .(9)

Now, we have a system of non-linear equations for solving
the

� :
’s. Since all the

� :
’s have to be positive, there should

be a condition for 3 � and � � such that ( � � - ’s are positive.
We have the following theorem.

Theorem 2 A necessary condition to have positive solu-
tions of the

� � ’s is
� � � ��*�� and

� � � � / � .



Proof: Since
� � * � for

� � � ��G �
�
��� � � , this implies

�
� 8'� * � and � � 8'� * � . However,

� � 8�� can be positive
or negative. Let us consider three cases.
Case 1: For 8 � �

, we have � � � ���7� , which implies that� � � ��� ���� � ��� � Since
� � *�� , this implies that

� � � � *,� .
Case 2: For

� / 8 / �
, we use the result from Equation

(9) and we have
�

� 8�� � 	: � � � 8�� � : � � � 8'� � � �
Since we want ( � � - ’s to be positive, we have

� : �
� � 8'� ��� � � 8'� 	 �	�

�
� 8�� � � 8'�

G

�
� 8�� �

Because
� � 8'�

	 �
�
�

� 8'� � � 8�� * � � 8'�
	
, we have� � � 8'� 	 �	�

�
� 8'� � � 8�� *�� � � 8'�
� . Hence

� : *
� � 8�� � � � � 8����

G

�
� 8�� ��� �

Therefore, for
� / 8 / �

,
� :

is always greater than zero
even when

� � 8'� is negative.
Case 3: For 8,� �

, we have

�
� � � � � , which implies

that �
� � � � � � �� � � �
Since

� � *,� and � � � � *�� , this implies that
� � � �+/,� .

Remarks: The implication of the above theorem is that
a necessary condition for a feasible region (i.e., a region
wherein a positive solution of

� � ’s exist) is
� � � � * � and� � � � /,� . If the system configuration ( 3 � , � � ) falls outside

this region, it is possible that there exist no positive values
of

� � ’s for the TDP scheduler to obtain the target waiting
time ratios.

The first condition,
� � � � * � , implies

9)= � � � � 3>�9 � * � �

��
�C5 	 3 � (10)

where
9)= � � � � 3.� is the average waiting time of the aggre-

gate traffic. If we want a large waiting time differentiation,9 �
has to be large. Since

9 � � 9 	 � ���
� � 9 �
, this

implies the fraction on the left hand side of Equation (10)
has to be small. Thus, 4

�
�C5 	 3 � should be close to one to

make the inequality hold. The physical meaning is that to
have a large waiting time differentiation, there should be
sufficient amount of higher class packets to keep the server
busy so that the lower class packets are delayed adequately.

The second condition is
� � � � / � , which implies

9 =
� � 3 /

� A ��
�C5 � 3 � 9 � � 9 � � (11)

Procedure: Iterative Algorithm
Input: ��� , ��� , � O� for � 5 � I���� I � .
/*arrival rates,

�����
,

	��
�
moments of service times*/

Output: � 5�� � M I � O I�������I �! #" .
1. begin
2. $ 5 =

and �&%('*)+ 5 M, + for
: 5 � I�������I � ; /* initialize */

3. /* test for convergence */

4. while (( 4  +�- M/. 0 + � � %(1�) .3254 ) and $76 MAX ITERATION COUNT )

5. begin
6. for (

: 5 ��8 : 6 5 �98 : 5 : D �
)

/* update the value of � %:1�)� */

7. �&%(1�; M )+ 5=< + � � %(1�; M )M I � %:1�; M )O I�������I � %(1�; M )+3> M I �&%(1�)+ I�������I � %:1�) �
;

8. $ 5 $ D ��8
9. end
10.end

Figure 1. Iterative algorithm

To make the inequality hold, the value of the left hand side
in Equation (11) should be large. Therefore, 3 � should be
large, especially for the lower traffic classes. The physi-
cal meaning is that in order to have a large waiting time
differentiation, the server has to delay packets of the lower
classes. If their load is high, many of them will be back-
logged and their waiting times will increase.

Last, but not least, another important implication of the
above necessary conditions is that even though the system
utilization 3 remains unchanged, it is still possible that cer-
tain distributions of 3 � ’s will not lead to a positive solution
of

� � ’s. In such cases, the system cannot achieve the target
waiting time ratios.

Let us now present an efficient algorithm for comput-
ing the values of

� � ’s, provided that the necessary condi-
tion is satisfied. In general, we have to find a solution for
the set of non-linear equations in (8). To achieve this, the
following iterative algorithm is proposed. Note that this
iterative algorithm is based on the Gauss-Seidel iteration
method [11], which has a well-known condition for con-
vergence.

First, let ? :
be the functional evaluation operator for� :

where
� : �@? : � � � � � 	 �
���
� � � � � for 8 � � �HG>�
���
�
� �

where

? : � � � � � 	 �
�
��� � � � ���
ABC BD
��� : � D#E � : �GF ��� : �� � : � for 8IH� �

,J � + E � : �A ��� �K� for 8�� �
.

(12)

and L
: � 
 ���

�
� 8'� � : � � � 8�� � � : � � � 8'�

for 8 � � ��G �
���
� � � � (13)

The iterative algorithm is shown in Figure 1.



4 Experiments

In this section, we report results from several experi-
ments. In the first experiment, we compare performance re-
sults using control parameters taken from [2] versus control
parameters obtained using our iterative algorithm. We also
investigate the long-term average waiting time spacings un-
der different system utilizations. Lastly, we study waiting
time spacings among different traffic classes given differ-
ent monitoring window sizes. Please refer to [4] for more
experimental results (e.g., non-Poisson traffic) and the con-
vergence conditions of the proposed iterative algorithm.
Experiment 1 (Comparisons with [2]): In this exper-
iment, we want to compare the achievable waiting time
spacings, using the control parameters in [2] and the control
parameters that we obtain in Section 3. We consider three
classes of traffic. The arrival process of class

�
(
� � � �HG>� � )

is Poisson with a rate of 1 � . The packet length distribu-
tion is the same for all classes where 40% of the packets
are 40 bytes, 50% are 550 bytes, and 10% are 1500 bytes.
The output link capacity is 441 bytes/unit time (the time
unit can be normalized to achieve an arbitrary link speed).
In each run of the experiment, we generate at least 50,000
packets for each class. Then, we average the waiting times
for each class and compare the ratios with the target wait-
ing time spacings. In part one of the experiment, we set1 � � � � ��� � 1 	 � � � � � 1�� � � � � (since the service time
requirement is normalized to one, the system utilization is3 � � � � � ) and we consider the target waiting time spacings
of � �KI � D � � � � � . Table 1 illustrates the achievable spac-
ings, using the control parameters in [2] and our proposed
method. We observe that the proposed control parame-
ters in [2] cannot achieve the target spacings; however, our
proposed algorithm can find the appropriate values of the
control parameters such that the spacings are achieved.

In the second part of the experiment, we set the arrival
rates as 1 � � � � G>� 1 	 � � � G � 1 � � � � G (or 3 � � � � ) and� �KI � D � � G>� � . Table 2 illustrates the achievable spacings.
The table shows that our algorithm can determine that it
is not possible to achieve the target waiting time spacings
( � �KI � D � � G ) for the given loading distribution. Indeed,
using the proposed control parameter values in [2], we can
only achieve spacing values around

� � � .
Experiment 2 (Long-term waiting time spacing): In the
first part of the experiment, we want to test whether we
can achieve the target waiting time ratios under different
system utilizations. We consider three classes of traffic.
All arrival processes are Poisson. For a low system utiliza-
tion ( 3)� � � G ) case, the arrival rates are 1 � � � � � � � 1 	 �� � � � 1 � � � � � � . For a medium utilization ( 3)� � � � ) case,
the arrival rates are 1 � � � � G � 1 	 � � � G � 1 � � � � G . For
a high utilization ( 3 � � � � ) case, the arrival rates are1 � �7� � � � 1 	 ��� � � � 1�� �7� � � . The packet length distribu-
tion is similar to the one in Experiment 1. Again, for each

run of the experiment, we generate at least 50,000 packets
for each class and then average the waiting times for each
class and compare the ratios with the target waiting time
spacings. The experimental results are summarized in Ta-
bles 3,4 and 5. We observe that our iterative algorithm is
very efficient (less than 20 iterations are executed) and we
are able to find the values for the control parameters so as
to achieve the long-term average waiting time spacings.

We also evaluate system performance under different
class load distributions. We consider three classes of traffic
with target spacings of � �KI � D � � � � � . In all the cases con-
sidered, the system utilization is 3)� � � � . The results are
shown in Table 6. We can observe that under different traf-
fic distributions, our proposed algorithm is highly effective
in achieving the specified waiting time ratios.

We conclude from these experiments that the proposed
algorithm can accurately determine the control parameter
values under different operating conditions (e.g., different
system utilizations, different traffic load distributions, etc)
so as to achieve the long term waiting time spacings.
Experiment 3 (Short-term waiting time spacing): Be-
sides long-term analysis, we study the short-term behav-
ior of our packet scheduling algorithm. In these experi-
ments, we measure the ratios of the average waiting times
between successive classes in consecutive time intervals.
We measure the average waiting times of all the packets
that get served within a specified time window. The length
of the time window is varied to be 10, 100, 500, 1000,
3000, 7000 and 10,000 p-units, where a p-unit is the av-
erage packet transmission time (the average service time
is one time unit.) We average all the data collected from
all the three traffic classes because the target ratios are the
same between two successive classes and this simplifies the
presentation of our results.

Figures 2 and 3 give histogram plots for the waiting
time spacings under system utilizations of 0.6 and 0.9, re-
spectively, and with various target waiting time spacings
and window sizes. The x-axis of each plot shows the pos-
sible range of waiting time spacings. From the figures, we
can observe that if the system is highly utilized ( 3 � � � � ),
then the achievable waiting time ratios can be kept close to
our target spacings even in short timescales. Moreover, the
variance of the ratios is small (which implies that most of
the probability mass is within the target spacings). How-
ever, if the system utilization is low ( 3 � � � � ), the variance
of the waiting time spacings is large. For really short time
scales (e.g., window size of 100), only a small percentage
of the data points lies within our target region. The reason
is that when the utilization is low, it takes longer for a suf-
ficient number of packets to be serviced so that the waiting
times can reach their equilibrium values. This in turn re-
quires a larger window size in order for the target waiting
times to be achieved.



Method target control achievable achievable
spacing ( � �KI � D �

) parameters spacing (
� M
� O ) spacing (

� M
� O )

[2]
� � � � � � � 	 � � � � � � � � � � � � � � � � � �

our approach 4
��� � � � � 	 � � � ��� � � � � � � � � ��� 3.990 3.890

Table 1. Comparison between achievable waiting time spacing

Method target control achievable achievable
spacing ( � �JI � D �

) parameters spacing (
� M
� O ) spacing (

� M
� O )

[2] G ��� � � � �
	 � G>� � � � � � � � � � � � �
our approach G cannot pass feasibility test —– —–

Table 2. Determination of non-achievable waiting time spacing

5 Conclusion

In this paper, we consider a WTP scheduler so as
to achieve delay proportional differentiated services. The
scheduler tries to ensure that the average waiting time of
class

�
traffic relative to that of class

� �
1 traffic is consis-

tently a specifiable ratio. This way, an ISP can legitimately
charge users of class

�
traffic a higher tariff rate (compared

to the rate of class
� � �

traffic) because class
�

users con-
sistently enjoy better performance than class

� � �
users.

For two-class WTP, we obtain a necessary and suffi-
cient condition for a given delay spacing to be feasible.
For general

� �
class WTP, we present a set of necessary

conditions, and give their physical meanings. Using these
conditions, we can easily determine if a given delay pro-
portional differentiation is impossible. We also present an
efficient algorithm for finding WTP control parameter val-
ues that will realize a set of specified waiting time spacings
when these parameters exist. Experiments are carried to
illustrate that using our control parameter values, we can
obtain waiting time spacings that are closer to the given
target waiting time ratios, when compared with results in
[2]. We also illustrate waiting time spacing performance
under short, medium and long timescales. Future work in-
cludes a dynamic measurement technique for tracking sys-
tem loads and adjusting control parameters in real-time to
achieve consistent waiting time ratios.
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Utilization 3 Low ( 3 � � � G ) Medium ( 3 � � � � ) High ( 3 � � � � )

Target ratio � ��	
1.1 1.1 1.1

Target ratio � 	 � 1.1 1.1 1.1< � � � � 	 � � �
? < � ��G>� � � � � � � � ? < � � � � ��� � � � � ? � � � � ��� � � � G � ?
Loops executed 5 11 12

achieved
9 � � 9 	

1.10 1.09 1.10
achieved

9 	 � 9
� 1.12 1.09 1.10

Table 3. Long Term Waiting Time Spacings with � �JI � D � � � � � .

Utilization 3 Low ( 3 � � � G ) Medium ( 3 � � � � ) High ( 3 � � � � )

Target ratio � ��	
1.5 1.5 1.5

Target ratio � 	 � 1.5 1.5 1.5< �
� � �
	 � � � ? Outside feasible region
< � �HG>� � � � � � ? < � � � � ����G � ��� ?

Loops executed —– 11 17
achieved

9 � � 9 	
—– 1.54 1.49

achieved
9 	 � 9

� —– 1.48 1.51

Table 4. Long Term Waiting Time Spacings with � �JI � D � � � � � .

Utilization 3 Low ( 3 � � � G ) Medium ( 3 � � � � ) High ( 3 � � � � )

Target ratio � ��	
2.0 2.0 2.0

Target ratio � 	 � 2.0 2.0 2.0< � � � � 	 � � �
? Outside feasible region Outside feasible region
< � ��G>� � G � � � � � � ?

Loops executed —– —– 20
achieved

9 � � 9 	
—– —– 2.01

achieved
9 	 � 9

� —– —– 1.99

Table 5. Long Term Waiting Time Spacings with � �JI � D � � G>� � .

load distribution (%) loops
� � �
	 �

�
9 � � 9 	 9 	 � 9

�
33.3-33.3-33.3 11 1 1.113 1.238 1.10 1.10

30-20-50 9 1 1.113 1.238 1.10 1.10
20-30-50 6 1 1.113 1.238 1.10 1.10
10-45-45 4 1 1.113 1.238 1.10 1.11
45-10-45 51 1 1.113 1.239 1.10 1.10
45-45-10 36 1 1.113 1.238 1.10 1.10

Table 6. Waiting Time Spacings under different traffic loading distributions ( � �JI � D � � � � � ).
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Figure 2. System utilization 3 � � � � , target ratio � �KI � D � � � � �
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Figure 3. System utilization 3 � � � � , target ratio � �KI � D � � � � �


