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Abstract

Instead of the increase-by-one decrease-to-half strategy
used in TCP for congestion window adjustment, we con-
sider the general case such that the increase value and
decrease ratio are parameters. That is, in the congestion
avoidance state, the window size is increased by� per win-
dow of packets acknowledged and it is decreased to� of
the current value when there is congestion indication. We
refer to this window adjustment strategy asgeneral additive
increase multiplicative decrease(GAIMD). We present the
(mean) sending rate of a GAIMD flow as a function of�,
�, loss rate, mean round-trip time, mean timeout value, and
the number of packets acknowledged by each ACK. We con-
ducted extensive experiments to validate this sending rate
formula. We found the formula to be quite accurate for a
loss rate of up to 20%. We also present in this paper a
simple relationship between� and� for a GAIMD flow to
be TCP-friendly, that is, for the GAIMD flow to have ap-
proximately the same sending rate as a TCP flow under the
same path conditions. We present results from simulations
in which TCP-friendly GAIMD flows (� = 0:31, � = 7=8)
compete for bandwidth with TCP Reno flows and with TCP
SACK flows, on a DropTail link as well as on a RED link. We
found that the GAIMD flows were highly TCP-friendly. Fur-
thermore, with� at 7/8 instead of 1/2, these GAIMD flows
have reduced rate fluctuations compared to TCP flows.

1. Introduction

In a shared network, such as the Internet, end systems
should react to congestion by adapting their transmission
rates to avoid congestion collapse and keep network uti-
lization high [9]. The robustness of the current Internet
is due in large part to the end-to-end congestion control
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mechanisms of TCP [14]. In particular, TCP uses anaddi-
tive increase multiplicative decrease(AIMD) algorithm [5];
the TCP sending rate is controlled by a congestion win-
dow which is halved for every window of data containing
a packet drop, and increased by one packet per window of
data acknowledged.

Today, a wide variety of new applications such as stream-
ing multimedia are being developed to satisfy the growing
demands of Internet users. Many of these new applications
use UDP because they do not require reliable delivery and
they are not responsive to network congestion [27]. There
is great concern that widespread deployment of such unre-
sponsive applications may harm the performance of respon-
sive TCP applications and ultimately lead to congestion col-
lapse of the Internet.

To address this concern one approach is to entice these
applications to use reservations [7] or differentiated ser-
vices [6] that provide QoS. However, even if such services
become available, we expect that many new applications
will still want to use best-effort service because of its low
cost. A second approach is to promote the use of end-to-end
congestion control mechanisms for best effort traffic and to
deploy incentives for its use [9]. However while TCP con-
gestion control is appropriate for applications such as bulk
data transfer, many real-time applications would find halv-
ing the sending rate of a flow to be too severe a response
to a congestion indication, as it can noticeably reduce the
flow’s user-perceived quality [26].

In the past few years, many unicast congestion control
schemes have been proposed and investigated [13, 17, 29,
30, 24, 4, 19, 23, 26, 21, 10, 2]. The common objective of
these studies is to find a good alternative to the congestion
control scheme of TCP. Since the dominant Internet traffic is
TCP-based [28], it is important that new congestion control
schemes beTCP-friendly. By this, we mean that the sending
rate of a non-TCP flow should be approximately the same as
that of a TCP flow under the same conditions of round-trip
time and packet loss [17].

The congestion control schemes investigated can be di-



vided into two categories: AIMD-based [13, 24, 4, 23, 19]
and formula-based [17, 29, 30, 26, 21, 10]. Roughly speak-
ing, AIMD-based schemes emulate the increase-by-one and
decrease-to-half window behavior of TCP. Formula-based
schemes use a stochastic model [17, 18, 20] to derive a for-
mula that expresses the TCP sending rate as a function of
packet loss rate, round-trip time, and timeout. Essentially,
all of these schemes are based upon the increase-by-one and
decrease-to-half strategy of TCP. We observe that decrease-
to-half is not a fundamental requirement of congestion con-
trol. In DECbit, also based on AIMD, a flow reduces its
sending rate to 7/8 of the old value in response to a packet
drop [16].

In this paper, we consider a more general version
of AIMD than is implemented in TCP; specifically, the
sender’s window size is increased by� if there is no packet
loss in a round-trip time, and the window size is decreased
to � of current value if there is a triple-duplicate loss in-
dication, where� and� are parameters. Since the name
AIMD is often used in the literature to refer to TCP Reno
congestion control (with� = 1 and� = 1=2), we call our
approachgeneral additive increase multiplicative decrease
(GAIMD) congestion control.

GAIMD was first considered by Chiu and Jain [5]. Their
study is mainly about stability and fairness properties. They
showed that if� and� satisfy the following relationships,�

0 < �
0 < � < 1

(1)

then GAIMD congestion control is “stable” and “fair.”
However, their study only considered the case when all
flows using the same�, � parameters. Also, they provided
no quantitative study of the effects of� and� on perfor-
mance metrics. In our study, we consider in detail the rela-
tionships between various performance metrics and the pa-
rameters� and�, assuming that� and� satisfy (1). In the
balance of this paper, we assume that� and� satisfy (1)
unless otherwise stated.

In particular, we are interested in the sending rate as a
steady state metric, and responsiveness, aggressiveness and
rate fluctuations as transient metrics. In this paper, we re-
port results on the GAIMD sending rate. Our results on
transient behavior will be reported in [33].

Our first result is a formula showing the GAIMD (mean)
sending rate as a function of the control parameters,� and
�, the loss rate, mean round-trip time, mean timeout value,
and the number of packets each ACK acknowledges. We
have conducted Internet experiments and extensive simu-
lations to validate this formula. The results show that the
formula is accurate over a wide range of� and� values for
a loss rate of up to 20%.

With the formula, we obtain our second result: a sim-
ple relationship between� and� for a GAIMD flow to be

TCP-friendly, that is, for the GAIMD flow to have approx-
imately the same sending rate as that of a TCP flow. The
relationship between� and� to be TCP-friendly is

� =
4(1� �2)

3

This relationship offers a wide selection of possible values
for � and� to achieve desired transient behaviors, such as
responsiveness and reduced rate fluctuations. For example,
we can choose� to be 7

8 so that a GAIMD sender has a less
dramatic rate drop than that of TCP given one loss indica-
tion. For this choice of�, if we use� = 0:31, the GAIMD
flow is TCP-friendly.

The balance of this paper is as follows. In Section 2, we
present the sending rate formula for a GAIMD flow. Exper-
iments to validate the formula are also presented in this sec-
tion. In Section 3, we use the formula to derive conditions
under which a GAIMD flow is TCP-friendly. In Section 4,
we present experimental results for the TCP-friendliness
conditions. We give a summary of related TCP-friendly
congestion control schemes in Section 5. Conclusion and
future work are presented in Section 6.

2. Modeling Sending Rate

The motivation of this paper is to consider a general
class of congestion window adjustment policies. Window
adjustment policy, however, is only one component of a
complete congestion control protocol. Other mechanisms
such as congestion detection and round-trip time estima-
tion are needed to make a complete protocol. Since TCP
congestion control has been studied extensively for many
years, GAIMD adopts these other mechanisms from TCP
Reno [14, 15, 25, 1]. In the next subsection, we give a brief
description of the GAIMD congestion window adjustment
algorithm. All other algorithms are the same as those of
TCP Reno.

2.1. GAIMD congestion window adjustment

A GAIMD session begins in theslowstartstate. In this
state, the congestion window size is doubled for every win-
dow of packets acknowledged. Upon the first congestion
indication, the congestion window size is cut in half and
the session enters thecongestion avoidancestate. In this
state, the congestion window size is increased by�=W for
each new ACK received, whereW is the current conges-
tion window size. For convenience, we say that the window
size is increased by� per round-trip time. So far we have
assumed that the receiver returns one new ACK for each
received data packet. Many TCP receiver implementations
send one cumulative ACK for two consecutive packets re-
ceived (i.e., delayed ACK [25]). In this case, the window
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size is increased by�=2 per round-trip time. GAIMD re-
duces the window size when congestion is detected. Same
as TCP Reno, GAIMD detects congestion by two events:
triple-duplicate ACKandtimeout. If congestion is detected
by a triple-duplicate ACK, GAIMD changes the window
size to�W . If the congestion indication is a timeout, the
window size is set to1.

2.2. Modeling assumptions

In the Appendix of [34], we derive an analytic expression
for the sending rate of a GAIMD sender as a function of�,
�, p (loss rate),RTT (round-trip time),T0 (timeout value),
andb (number of packets acknowledged by each ACK). The
derivation is a fairly straightforward extension of a similar
formula derived for TCP by Padhye, Firoiu, Towsley, and
Kurose [20]. Various assumptions and simplifications have
been made in the analysis which are summarized below:

� We assume that the sender always has data to send (i.e.,
a saturated sender). The receiver always advertises a
large enough receiver window size such that the send
window size is determined by the GAIMD congestion
window size.

� The sending rate is a random process. We have limited
our efforts to modeling the mean value of the sending
rate. An interesting topic will be to study the variance
of the sending rate which is discussed in [33].

� We focus on GAIMD’s congestion avoidance mecha-
nisms. The impact of slowstart has been ignored.

� We model GAIMD’s congestion avoidance behavior
in terms of rounds. A round starts with the back-to-
back transmission ofW packets, whereW is the cur-
rent window size. Once all packets falling within the
congestion window have been sent in this back-to-back
manner, no more packet is sent until the first ACK is
received for one of theW packets. This ACK recep-
tion marks the end of the current round and the begin-
ning of the next round. In this model, the duration of
a round is equal to the round-trip time and is assumed
to be independent of the window size. Also, it is as-
sumed that the time needed to send all of the packets
in a window is smaller than the round-trip time.

� We assume that losses in different rounds are indepen-
dent. When a packet in a round is lost, however, we

assume all packets following it in the same round are
also lost. Therefore,p is defined to be the probabil-
ity that a packet is lost, given that it is either the first
packet in its round or the preceding packet in its round
is not lost [20].

2.3. Sending rate formula

The analytic expression of Equation (2) for the average
GAIMD sending rateT has been derived (see Appendix
of [34] for derivation):

We first observe that the denominator of the formula is
the summation of the following two terms:

TD�;�(p;RTT; b) , RTT

s
2b(1� �)

�(1 + �)
p (3)

TO�;�(p; T0; b) , T0min
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From the derivation, we know that the denominator consists
of only the first termTD�;� if all congestion indications are
triple-duplicate ACKs; note thatTD�;� does not depend on
T0. The second termTO�;� is added when congestion in-
dications can be both timeouts and triple-duplicate ACKs;
note thatTO�;� does not directly depend onRTT . Com-
paring these two terms, we observe that when loss ratep is
small,TD�;� = O(p0:5) andTO�;� = O(p1:5), therefore,
TD�;� dominatesTO�;�, and the sending rate is mainly
determined byTD�;�. However, asp increases,TO�;� be-
comes larger. Define

Q , min

 
1; 3

r
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p

!

We notice thatQ is the middle term ofTO�;�. From the
derivation we know thatQ approximates the probability of a
loss being a timeout. From the expression ofQ we note that
whenp is small, the probability of timeout is low. However,
asp increases, the probability of timeout increases rapidly
to 1.

We next consider how the sending rate varies with the
parameters,RTT , T0, �, �. It is obvious from Equation
(2) that the sending rate decreases with increasingRTT or
T0. If � is increased towards 1, bothTD�;� andTO�;�



will decrease, leading to a higher sending rate. Also if�
is increased, bothTD�;� andTO�;� will decrease, leading
to a higher sending rate. Furthermore, we observe that�
must be less than 1 for the sending rate formula to be valid.
If � approaches0, the denominator in Equation (2) goes to
infinity and the sending rate goes to 0.

Lastly, we note that Equation (2) reduces to other well-
known TCP formulas when we instantiate it with� = 1 and
� = 1

2 . First, if we ignore theTO�;� term, we obtain

T1; 1
2

(p;RTT; b) = TTCP (p;RTT; b) =
1

RTT

r
3

2bp

which is the formula derived in [17, 18]. Next, if we include
theTO�;� term, we have

T1; 1
2

(p;RTT; T0; b) =
1

RTT
p

2bp

3
+T0 min

�
1;3
p

3bp
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�
p(1+32p2)

which is the formula derived in [20]. Therefore, our formula
subsumes these other formulas as special cases.

2.4. Formula validation

Because of the simplicity of GAIMD, we have imple-
mented GAIMD in both NetBSD and Linux kernels, and
conducted some experiments in a LAN environment. We
have also tested the formula in Equation (2) extensively us-
ing thensnetwork simulator. In all cases, the accuracy of
the formula is respectable over a wide range of� and�
when the loss rate is less than 20%. In this section, we re-
port our simulation validations.

The purpose of our validations, presented in this section,
is to answer the following questions:

� Is the formula accurate? Over what range of loss rate
p is it accurate?

� Since it is a statistical mean, when do sending rate vari-
ations become significant?

� What is the general trend when the formula loses ac-
curacy?

2.4.1 Simulation setup

The simulation topology we chose to present results is the
well-known single bottleneck (“dumbbell”) as shown in
Figure 1. We have also conducted simulations for other
topologies; the results are similar.

In all of the simulations to be discussed in this section,
the bottleneck link bandwidth is fixed at 15Mbps and its
propagation delay at 50ms. We have also conducted exper-
iments with other link bandwidths and propagation delays;
the results are similar. In all simulations, the access links are

TCP s1

TCP s16

Gaimd s1

Onoff s1

Onoff sn

Gaimd s16

R1 R2

15Mbps/50ms

TCP r1

TCP r16

Gaimd r1

Gaimd s16

Onoff r1

Onoff rn

Figure 1. Simulation topology

sufficiently provisioned to ensure that packet drops/delays
due to congestion occur only at the bottleneck link fromR1
toR2.

We included three types of flows in the simulations. The
first type is GAIMD flows. To see sending rate variations,
we placed 16 GAIMD flows. For comparison purposes, we
also placed 16 TCP Reno flows. Since the dominant traffic
on the Internet is web-like traffic, we believe that it is impor-
tant to model the effects of competing web-like traffic (short
TCP connections, some UDP flows). It has been reported
in [22] that WWW-related traffic tends to be self-similar
in nature. In [31], it has been shown that self-similar traf-
fic can be created by using several ON/OFF UDP sources
whose ON/OFF times are drawn from a heavy-tailed distri-
bution such as the Pareto distribution. Therefore, we chose
ON/OFF UDP flows as the third type of traffic. In these
experiments, we set the mean ON time to be 1 second, and
the mean OFF time to be 2 seconds. During ON time each
source sends at 500Kbps. The shape parameter of the Pareto
distribution is set to be 1.5. In our experiments, we varied
the number of ON/OFF sources from 10 to 70 to create a
loss rate from about 1% to about 30%.

Another aspect of the simulations worth mentioning is
how we start the flows. To avoid phase effects [11], we
assign small random propagation delays to the access links
and start the flows randomly.

In all experiments in this section, each simulation is run
for 120 seconds. The loss rate is approximated by dividing
the number of times a GAIMD flow or TCP flow reduces its
window size by the total number of packets it sends. Notice
that this estimation of loss rate is a lower bound for the loss
rate that we defined in model derivation. Consequently, we
will see that the formula will overestimate and give an upper
bound of the sending rate.

2.4.2 Predication accuracy

We first evaluate the predication accuracy of the formula. A
good measure of the accuracy is the ratio of the predicated
sending rate and the actual sending rate. The closer this
ratio to 1, the better the predication accuracy. To test the
validity range of the formula, for each�, we vary� from 0.1
to 1.0. For each�, � pair we vary the number of ON/OFF



flows from 10 to 70 to create a loss rate from about 1% to
about 30%.

Figures 2, 3, 4 demonstrate the predication accuracy for
� = 0:5; 0:75; 0:875. The bottleneck link is a drop-tail link.
In these three figures, the averages of the loss rates, round-
trip times, and timeouts of the 16 GAIMD flows in each
experiment are used to calculate a predicated sending rate
for the experiment. Then the actual sending rates of the
16 GAIMD flows are averaged to obtain an average actual
sending rate. What the figures show are the ratio between
the calculated average sending rate using Equation (2) and
the actual average sending rate. We observe from the fig-
ures that for a wide range of�, �, the formula predications
are pretty close to the actual sending rate when the loss rate
is less than about 20%. Next, we consider the impact of
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Figure 2. Accuracy for � = 0:5 and drop-tail
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Figure 3. Accuracy for � = 0:75 and drop-tail

loss patterns on the accuracy of the formula. In the analytic
model, we assume that (i) losses in different rounds are in-
dependent, and (ii) losses in the same round are correlated,
i.e., when one packet is lost, all packets following it in the
same round will also be lost. For a drop-tail router, this
correlated-loss assumption is quite reasonable. To see the
potential impact of loss patterns, we repeat the above ex-
periments for a RED link. Figure 5 repeats the experiment
in Figure 4 but uses a RED link. Comparing Figure 4 and
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Figure 4. Accuracy for � = 0:875 and drop-tail

5, we see that loss patterns do not have a large impact on
the accuracy of the formula.

GAIMD Model Predication Accuracy (beta=0.875, RED)
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Figure 5. Accuracy for � = 0:875 and RED

2.4.3 Sending rate variation

Since what we derived is the mean value of the sending rate
as a random process, we expect to see higher variations in
the sending rate when loss rate increases. We illustrate this
effect in this subsection. In addition to plotting the predi-
cation accuracy, Figures 6, 7 show the predication accuracy
for each of the 16 GAIMD flows, for� = 0:5, � = 0:5
and� = 0:4, � = 0:75, and for both drop-tail and RED
links. Observe from the figures that with increasing loss
rate, sending rate variations increase. However, from both
figures we can see that when the loss rate is 10% or less,
the predication is accurate and the sending rate variance is
reasonably small.

A major trend we observe from all the figures is that the
sending rate formula tends to overestimate when loss rate
is high or when the�, � parameters are aggressive. Even
though we desire an accurate sending rate model, we note
that some applications of the formula do not require high
accuracy but rather consistency. For example, if the pur-
pose of using the formula is to compare the sending rates of
two�, � pairs, then we can apply the formula as long as the
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Figure 6. Variations of sending rate for � = 0:5, � = 0:5 with drop-tail and RED
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Figure 7. Variations of sending rate for � = 0:4, � = 0:75 with drop-tail and RED

amount of inaccuracy is consistent. We are particularly in-
terested in relative predication accuracies between GAIMD
and TCP flows because a major objective of ours is to use
the formula to derive TCP-friendly GAIMD flows. There-
fore, if its predication accuracy for a GAIMD flow is similar
to the predication accuracy of a TCP flow, we can still use
the formula to compare the sending rates of a GAIMD flow
and a TCP flow. In both Figures 6, 7 we have also shown
the predication accuracy of the 16 comparison TCP flows.
We observe that the overestimates for GAIMD and for TCP
are similar for most of the experiments we have conducted.

In summary, the validation experiments show that the
formula is reasonably accurate for a wide range of� and
� when the loss rate is not too high (up to 20%). For a loss
rate of up to 10%, the sending rate variance is also small;
thus the formula gives an accurate predication of the send-
ing rate of a GAIMD flow.

3 TCP-friendly GAIMD

From the sending rate formula for a GAIMD flow, we
observe that it is possible for (�, �) pairs to yield the same
sending rate. Of particular interest are the (�, �) pairs that
have (approximately) the same sending rate as that of a TCP
flow. We call these (�, �) pairs theTCP-friendly curve.

Utilizing Equation (2), we can try to get the TCP-
friendly curve by selecting� and� such that

T�;�(p;RTT; T0; b) = T1; 1
2

(p;RTT; T0; b) (5)

Note thatp is a free variable in Equation (5). One way
to derive the TCP-friendly� for a given� is to havep in
the derived expression. However, this implies measuring
p. To select� and� values such that equality holds for
all p, we will have two equations: one forTD�;� and one
for TO�;�. In this case, the only solution is� = 1 and
� = 1=2. Therefore, we propose to relax the constraint of
trying to match rates for allp. More specifically, we present
three methods to determine the TCP-friendly� for a given
�.

� TD TCP-friendly curve
This is the simplest case, as we only try to match the
first termTD�;�

TD�;�(p;RTT; b) = TD1;1
2

(p;RTT; b)

Canceling the common variablesp, RTT andb from
both sides, and squaring, we get

(1� �)

�(1 + �)
=

(1� 0:5)

1 � (1 + 0:5)



Rearranging, we have

� =
3(1� �)

(1 + �)
(6)

(It is interesting to see that according to Equation (6),
for � = 1, we have� = 0, and for� > 1, we have
� < 0. Even though these are not stable parameters,
the pairing makes sense.)

From both formula derivation and validation, we know
that compared toTO�;�, TD�;� becomes less impor-
tant whenp increases towards 1. Therefore, it may be
better to try to match theTO�;� term. Thus, a second
equation to determine the TCP-friendly� for a given
� is obtained as follows.

� TO TCP-friendly curve

TO�;�(p; T0; b) = TO1; 1
2

(p; T0; b)

Canceling the common variablesp, T0 andb from both
sides, we haver

1� �2

�
=

r
1� 0:52

1

Rearranging, we get

� =
4(1� �2)

3
(7)

(Notice that for� = 1, we have� = 0, and for� > 1,
we have� < 0, the same pairing as in the previous
method.)

� Error minimizing TCP-friendly curve
The two previous approaches are based on consider-
ing the two terms in the denominator of Equation (2)
one at a time. We next consider both terms and use
optimization to find�� for a given� such that the mis-
match between GAIMD and TCP rates is minimized
over a range of loss rates. Formally, we define the er-
ror function

E�(�) =

Z 1

0

w(p)

�����T�;�(p)T1; 1
2

(p)
� 1

����� dp (8)

wherew(p) is a function which allows loss rates that
are important to be given more weight in the optimiza-
tion. In this paper, we consider a simple function that
gives a weight of 1 to any loss rate less than a thresh-
old value; a loss rate higher than the threshold gets a
weight of 0. Figure 8 shows the shape of our weight
function.

0
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pthreshold

Figure 8. Weight function w(p)

Figure 9 showsE�(�) for � = 0:875, T0 = 4RTT ,
with the weight function threshold varying from 0.1 to
0.7. Note thatE�(�) has a well-defined bottom and
the optimal�� for a given� is easy to find. We ob-
serve the trend that as the weight function threshold
increases, the optimal�� increases. In the� = 0:875
case,�� increases from0:26 to about0:3 when the
weight function threshold was changed from 0.1 to 0.3.
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Figure 10 shows TCP-friendly curves obtained by the
three methods described above. There are several inter-
esting observations. First we observe that the curve deter-
mined byTD�;� is higher than others when� is less than
0.5, and less than others when� is larger than 0.5. Second,
we see that the TCP-friendly� determined byTO�;� gives
an upper bound when� is larger than 0.5, and the curve
is also very close to the one determined by optimization if
the weight function threshold is above 40%. Therefore, we
propose to use Equation (7) to get the TCP-friendly� for a
given� whenever we want to do error minimization up to a
40% loss rate.

Figure 11 shows ratios between the sending rates of
GAIMD and TCP Reno for different values of TCP-friendly
� determined by the three methods;� is fixed at 0.875. We
observe from this figure that at a low loss rate a GAIMD
flow using the� determined byTO will receive about
20% higher bandwidth than TCP Reno; and the flow us-
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ing the� determined byTD will receive lower bandwidth.
However, the differences diminish as the loss rate becomes
higher. One factor we need to consider when determining
� is that we only compared GAIMD with TCP Reno. How-
ever, many variants of TCP, e.g. NewReno, SACK [8], and
TCP Vegas [3], achieve higher bandwidth than TCP Reno.
Therefore, it is reasonable to select the� that is somewhat
more aggressive than TCP Reno at a low loss rate1. We will
see in the next section that TCP SACK does reduce the ad-
vantage of GAIMD when we use the� determined byTO.

We also observe from Figure 11 that when loss rate is
very high, the ratios converge to one because essentially all
loss indications are timeouts, and the parameters� and�
no longer play an important role. However, as we will see
in the next section, under very high loss rate, TCP receives
more bandwidth than GAIMD because of its more aggres-
sive window increasing behavior. This shows that our for-
mula loses accuracy when the loss rate is very high.
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Figure 11. Ratios of the GAIMD flow sending
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1Another possibility is to adaptively change� by measuring loss rate.

3.1 A closer look at TCP-friendliness

In previous subsections, we derived TCP-friendly curves
using Equation (2). In this subsection, we provide an in-
tuitive explanation of why a GAIMD flow can be TCP-
friendly. Figure 12 shows the evolution of the window sizes
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of a GAIMD flow with � = 0:31, � = 0:875 and a TCP
flow with the same round-trip time [5]. In this figure, time-
out is not considered. We first observe that the trace will not
converge to theequal window sizecurve. This means that
two flows with different control parameters will not have
equal sending rate atany time. We observe, however, that
the window size trace crosses the equal window size curve.
In particular, when the trace is on the left of the equal win-
dow size curve, the GAIMD flow has a larger window size
and therefore will send more packets. On the other hand,
when the trace is on the right of the equal window size
curve, the TCP flow will send more packets. Therefore, in
the long run, they will receive about the same bandwidth.
We also observe from this figure that the oscillation range
of the GAIMD window is smaller than that of TCP, which
indicates that the rate fluctuations of the GAIMD flow will
be smaller.

4 Experimental Evaluation of GAIMD TCP-
friendliness

In this section, we present experimental results for one
particular GAIMD, namely, for� = 0:31 and� = 0:875.
It will be referred to as GAIMD(0.31, 0.875). We will
study its performance mainly from the perspective of TCP-
friendliness. Results for other TCP-friendly pairs, such as
� = 0:58 and� = 0:75, are similar.

For experiments in this section, we used the topology in
Figure 1. However, we used only two types of flows:n TCP
Reno flows, andnGAIMD(0.31, 0.875) flows. The number
n is varied from 1 to 64. Each simulation was run for 120
seconds.



4.1 TCP-friendliness

From the analytic model, we see that loss rate has a ma-
jor impact on the sending rate. Therefore, we evaluated the
TCP-friendliness of GAIMD(0.31, 0.875) for a wide range
of loss conditions. There are two experiment parameters we
can use to control the loss rate, namely: the number of flows
(2n) and the bottleneck link bandwidth.
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Figure 14. Normalized sending rates for
15Mbps drop-tail bottleneck link with Reno

Figures 13, 14 show for a drop-tail bottleneck link the
normalized2 average sending rates of GAIMD(0.31, 0.875)
and TCP flows, as well as the sending rates of individual
flows. We observe that at a low loss rate (15Mbps link, or
1.5Mbps link with less than 64 flows), GAIMD(0.31, 0.875)
flows receive more bandwidth than TCP flows. This is ex-
pected from Figure 11. With a higher loss rate (1.5Mbps
link with more than 64 flows), TCP flows receive higher
bandwidth than GAIMD(0.31, 0.875) flows. We have seen
consistently from all of our experiments that at a high

2such that a fair share of the link bandwidth is 1.

loss rate TCP flows receive higher bandwidth than TCP-
friendly GAIMD flows. One explanation is that TCP Reno
increases more aggressively under high loss than TCP-
friendly GAIMD (i.e.,� < 1). Whereas GAIMD’s smaller
reduction (i.e.,� > 1=2) does not play as important a role
because the congestion window size is small under high
loss.

Another observation we can make from these figures is
that the variance of individual flow rates is much higher for
the 1.5Mbps link than for the 15Mbps link. This is expected
because we have already seen that sending rate variance in-
creases with loss rate increase.
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We next consider the effects of loss patterns on GAIMD
TCP-friendliness. Figures 15 and 16 repeat the experiments
in Figure 13 and 14 with RED links. Comparing the figures,
we observe that with RED instead of drop-tail links, TCP
receives higher bandwidth than GAIMD(0.31, 0.875). We
verified this in some other experiments, and it appears that
the random and early dropping of RED does protect TCP
traffic from less responsive traffic, such as GAIMD(0.31,



0.875).
In our third set of experiments, the competing TCP flows

implement TCP SACK instead of TCP Reno. While it is
generally assumed that Reno generates the dominant traf-
fic in the current Internet, many operating systems are be-
ginning to support TCP SACK; for example, Linux kernel
supports TCP SACK as its default. Therefore, we think it
is important to evaluate the TCP-friendliness of GAIMD
when competing with TCP SACK. (We have also experi-
mented with the case that GAIMD is based on TCP SACK
instead of Reno. In this case, GAIMD will become more
aggressive.)
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Figures 17 and 18 repeat the experiments in Figures 13
and 14 except that the competing TCP flows are SACK in-
stead of Reno. It can be seen that the results are very similar
to the cases when the competing flows are Reno. However,
we do observe that the crossover point in Figure 17 is at a
lower loss rate than the one in Figure 13 (at 24 flows versus
48 flows for a 1.5Mbps drop-tail link).

Figures 19 and 20 repeat the experiments in Figures 15

and 16 except that the competing Reno flows are replaced
with SACK flows; we can see that the results are similar to
the previous cases.
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To summarize, we see that GAIMD flows compete with
both TCP Reno and TCP SACK flows in a highly friendly
manner over a wide range of loss rates and for both drop-tail
and RED queueing disciplines.

4.2 Rate fluctuations

Having investigated long-term sending rate fairness, we
next evaluate the transient behavior of GAIMD. In our
study, we are particularly interested in the smoothness of
its sending rate, the convergence speed tofair state and its
response to congestion. We observe that a GAIMD flow
with a smaller value of� will have a faster response to con-
gestion, but its rate fluctuation will be higher. However,
due to space limitation, a detailed discussion of our find-
ings is deferred to [33]. Figure 21 shows time traces of
the sending rates of one GAIMD(0.31, 0.875) flow and one



TCP flow when 4 GAIMD(0.31, 0.875) flows and 4 TCP
Reno flows share one RED link with 15Mbps bandwidth
and 20ms propagation delay. Each point in the figure is cal-
culated over a time interval of 150ms, about 2 to 3 times
the round-trip time. We can observe visually that GAIMD’s
sending rate is relatively smooth compared to that of TCP.
From [33], we know that if we measure smoothness by
sending rate coefficient of variations, GAIMD with� =
7=8 will have about half of the coefficient of variations of
TCP at low loss rate.
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4.3 Implementation

GAIMD is straightforward to implement because we
only need to change two parameters in TCP Reno. Note,
however, that we need to distinguish the first loss during
slow start; in this case, the window size is dropped to half
instead of�.

5 Summary of Related Work

AIMD was first proposed by Chiu and Jain in [5]. This
design principle was used in DECbit [16] and TCP [14].
One of the first to consider implementing TCP-like conges-
tion control for video services is [13]. However, it uses the
standard TCP adjustment rule, and therefore, has the same
TCP rapid rate changes.

Ozdemir and Rhee proposed the TEAR protocol (TCP
Emulation at the Receivers) in [19]. In TEAR, a receiver
emulates the congestion modifications of a TCP sender.
To transform from a window-based scheme to a rate-based
scheme, an weighted sliding window moving average of the
congestion window size is divided by the estimated round-
trip time [12]. As we will see in [33], TEAR has some prob-
lems in its responsiveness, and aggressiveness behaviors.

Another type of congestion control is to use additive in-
crease, multiplicative decrease in some form, but not apply-
ing it to a congestion window. The Rate Adaption Protocol

(RAP) [23] uses an AIMD rate control scheme based on reg-
ular acknowledgments sent by the receiver which the sender
uses to detect lost packets and estimate RTT. The authors
use the ratio between long-term and short-term averages of
RTT to fine tune the sending rate on a per packet basis. In
addition to the change from a window-based approach to
a rate-based approach, RAP also includes a mechanism for
the sender to stop sending in the absence of feedback from
the receiver. However, RAP does not account for the impact
of retransmission timeouts.

Another AIMD protocol is DLA [24] which makes use
of RTP reports from the receiver to estimate loss rate and
round-trip times.

In equation-based congestion control approaches [17,
26, 21, 10], the sender uses an equation that specifies the
allowed sending rate as a function of RTT and packet drop
rate, and adjusts its sending rate as a function of those mea-
sured parameters. However, the stability of this particular
approach is not understood yet. Also, measuring loss rate
turns out to be a complex issue, especially when the tradeoff
between responsiveness and accuracy has to be considered.

In [2], Bansal and Balakrishnan use Binomial algorithms
to generalize TCP-style additive-increase by increasing in-
versely proportional to a powerk of the current window
(for TCP, k=0) and TCP-style multiplicative-decrease by
decreasing proportional to a powerl of the current window
(for TCP, l = 1). As we will see in [32], the analysis of
GAIMD and Binomial can be combined to have a more gen-
eralized AIMD congestion control.

6 Conclusion

In this paper, we have considered a general version of
AIMD congestion control, where the increase value and de-
crease ratio in congestion window adjustment are parame-
ters,� and�, respectively. We derived a simple formula
for the (mean) sending rate of a GAIMD flow as a func-
tion of �, �, loss rate, mean round-trip time, mean timeout
value, and the number of packets acknowledged by each
ACK. We conducted extensive experiments to validate this
sending rate formula. We found the formula to be quite ac-
curate for a loss rate of up to 20%. We also present in this
paper a simple relationship between� and� for a GAIMD
flow to beTCP-friendly, that is, for the GAIMD flow to have
approximately the same sending rate as a TCP flow under
the same path conditions. We present results from simu-
lations in which TCP-friendly GAIMD flows (� = 0:31,
� = 7=8) compete for bandwidth with TCP Reno flows
and with TCP Sack flows, on a DropTail link as well as
on a RED link. We found that the GAIMD flows were
highly TCP-friendly. Furthermore, with� at 7/8 instead
of 1/2, these GAIMD flows have reduced rate fluctuations
compared to TCP flows. We are currently investigating



tradeoffs among rate fluctuation, responsiveness, and con-
vergence speed. We will report the results in [33].
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