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Abstract

We study group loss probabilities of Forward Error Cor-
rection (FEC) codes in shared loss multicast communica-
tion. We present a new analysis model with explicit state
equations using recursive formulae. Our method looks at
an FEC group as a whole, rather than analyze the number
of transmissions of a particular packet. Our work applies
to C(n, k) erasure codes, where any k out of n packets may
decode the entire group. We find the cumulative distribution
function that all leaf nodes in a shared loss tree successfully
decode a C(n, k) FEC group, the probability mass function
(pmf) for the number of leaf nodes hat successfully decode
a transmission group, the expected number of packets re-
ceived on successful decode and the expected number of
missing packets on decode failure for a particular leaf node
of the multicast tree, the pmf that all leaf nodes hold the
same packets in common, and the expected height of packet
loss. Most of our findings generalize to arbitrary trees with
non-uniform link loss. Our results also apply to non-FEC
trees. We illustrate applications of our work with examples.

1. Introduction

Supporting reliable multipoint communication effi-
ciently over the Internet is becoming increasingly impor-
tant for such applications as software updates, web caching
and replication, and distributed simulations. There have
been many proposals on how to organize nodes along mul-
ticast trees for efficient multipoint communication and how
to recover from packet losses and bit errors to achieve reli-
able multicasting over such trees. Forward Error Correction
(FEC) has been used in the past to recover from both cor-
ruption of packets and packet losses. In this paper, we focus
on FEC codes that recover from erasures [14], given that
packet losses in multicast trees due to congestion constitute
the primary source of errors in multipoint communication
over the Internet.
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There is a large body of work on the effect of FEC in
reliable multicast. FEC has applications to bulk data distri-
bution (Digital Fountain [6], MFTP [16], and RMDP [20]),
large bandwidth-delay scenarios [15], and real-time audio
and video multicast (RTMC [7]), among other applications.
Gemmel et al. [9] developed a scheme for one-to-many
telepresentations. Barbeau uses RMDP to multicast man-
agement information to mobile agents [1]. Lee describes
RAID-like technology for Video-on-Demand server redun-
dancy [12]. One study found significant gains in reliable
audio/video multicast over high loss links using FEC [8].
Bartal et al. developed a feedback free multicast protocol
based on FEC with bounded worst case behavior [2]. Bhar-
gava et al. use FEC codes to optimize battery life in mobile
nodes over wireless networks [4]. Non-topology based reli-
able multicast schemes show significant improvement using
FEC techniques [13] !.

Studies have looked at using FEC for retransmission
of data and pro-active loss reduction. Several papers
have estimated appropriate FEC codes for certain situations
(e.g. [11, 13, 17]). Some papers use experience or heuris-
tics. Other quantitative analysis of FEC in multicast gen-
erally focuses on independent loss models or simulation.
Chou, for instance, analyzes a hybrid FEC scheme for au-
dio and video broadcast with up to 20% packet loss rate and
independent transmission channels [8].

Our goal is to provide basic analytical tools to atde in
the comparison of organizations and retransmission policies
with and without FEC in shared loss multicast trees. In a
shared loss tree, we explicitly account for correlated loss
because of shared links. To achieve these goals, our work
provides a means to calculate the following observables: (1)
the cdf that all leaf nodes decode a C(n, k) code on the first
transmission; (2) the pmf that r leaf nodes decode on the
first transmission; (3) the pmf that a particular leaf node
received m packets given that the root sent [ packets; (4)

! This same study found that topology based multicast schemes — those
that use local recovery — benefit much less from FEC and may incure larger
latencies with it.



the pmf that a particular leaf node received m packets (as
in (3) above) and failed to decode; (5) the pmf that all leaf
nodes received the same m packets in a sequence of n; (6)
the pmf of any loss at height h.

Item (1) has applications for best-effort networks where
communications use FEC to reduce loss. Other network
topologies where the bandwidth-delay product is large
might also use FEC in this mode. Items (2), (3), and (4)
concern the first transmission of an FEC group. One may
use them, for instance, to size a tree or find an appropriate
code structure for a given tree. Item (5) is useful in compar-
ing retransmission policies. By measuring the correlation
of packet reception, one may determine the average number
of packets in a group that need retransmission. Note that
this is different than (3) and (4), which only concern a par-
ticular node. Item (6) gives us insight as to where a tree
is most likely to lose a packet. We could use this informa-
tion to place FEC repeaters or group leaders for subcasting
repairs. Item (6) uses a Markov model which is useful for
deriving other equations of interest. These include the prob-
ability of growth, decay, or equilibrium per tree height and
the expected number of lost packets per tree height.

For a C'(n, k) FEC code, we say that a group of k£ mes-
sage packets are encoded to n transmission packets, where
n > k. Usually, n = k + h, where h is the number of “re-
dundancy” packets. As long as a receiver correctly receives
any k of the n packets, it may decode the entire group. For
example, a C(26,20) code adds 6 extra packets. The rate
of an FEC code is n/k. A C(1,1) code is equivalent to not
using FEC. We use the term Transmission Group (TG) to
mean the set of n encoded packets. The Message Size or
Data Size is the set of k¥ unencoded packets. A code may
be systematic, and use unencoded data packets plus parity
packets. Other codes may require that all n packets be en-
coded. We generally assume that codes are not systematic,
but this is just to give a lower bound and only applies to
some of our comparisons of FEC codes to non-FEC trans-
missions.

In this study, the particular nature of the FEC code is not
of interest. Our analysis applies as long as we may express
the code in terms of n, k. In our model of a multicast tree,
internal nodes do not participate in the FEC code. While
one may model receivers at internal nodes, the routers that
forward message packets do not use the FEC code. Loss
is uncorrected on a per-link basis. We also assume that the
FEC code has perfect erasure correction as long as the re-
ceiver has at least k packets from a group.

Section 2 presents previous models for shared loss mul-
ticast trees. Our model is based largely on Bhagwat [3]. We
extend this work’s recursive formula for shared loss non-
FEC trees to FEC-enhanced trees. We focus on the cumula-
tive distribution function at a leaf node. In Section 3 we ex-
tend our results to a probability mass function for the num-
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Figure 1. Expected TG size (256 receivers)

ber of leaf nodes that successfully decode an FEC group
over an arbitrary tree. Section 4 develops the probability
mass function for the number of packets in an C(n, k) code
received by a leaf node for a tandem tree. We further de-
rive the pmf for the number of packets received when a
leaf node fails to decode. From these we may generate
the expected number of packets a leaf node is missing af-
ter the first transmission of an FEC group. The section also
presents a Markov model to compute the expected height
of packet loss in a non-FEC multicast tree. In Section 5,
we develop theorems on leaf node packet correlation. Sec-
tion 6 concludes with remarks on the implications of our
study and the use of FEC in multicast communications. It
also suggests further work in this area.

2. Single Packet Models

Several other papers have looked at FEC-enhanced mul-
ticast (e.g. [11], [21], [18]), but in general they consider
independent loss. Nonnenmacher et al. [18] has a section
on shared loss in FEC multicast, but it i1s a specific analy-
sis of a restricted model. Our present analysis begins from
the same roots, but yields general equations for shared loss
trees.

Bhagwat [3] analyzes the distribution of the number of
transmissions of a given packet over a shared loss tree until
all nodes receive the packet . The analysis is done for non-
FEC multicast. For a given node N, Bhagwat finds that if
N’s loss rate is p,; then the probability that 7 or fewer trials
are needed to successfully deliver a packet to a receiver is
given by a recursive geometric distribution. Letting C(NV)
be the set of N’s children,
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Eq. 1 uses a geometric distribution to model leaf nodes
and a binomial distribution to model internal nodes. We
observe that since transit routers do not participate in FEC
encoding, Bhagwat’s model for internal nodes should still
hold if we wish to find the probability that all leaf nodes
decode.

For leaf nodes, we present a new distribution which ac-
counts for FEC group recovery of packets. We use a neg-
ative binomial distribution for 4 trials until the k** success.
We may find the cumulative distribution function (cdf) that
it takes ¢ or fewer trials, k < ¢ < n, to decode a C'(n, k)
code. We note that Lemma 1 reduces to 1 — pi when k = 1,
in agreement with Eq. 1.

Lemma 1 (proof omitted) For a leaf node L with link loss
probability p in a shared loss multicast tree using an FEC
code C(n, k), where L’s parent sends a total of i out of n
packets, the probability that L decodes the group is F; (i) =
1

> Goyp -k
u=k

In Eq. 1, we may use Lemma 1 in place of the geometric
term to find the probability that all leaf nodes successfully
decode a C(n, k) FEC code. The subtlety of our transfor-
mation of Eq. 1 is that F, (i) is now the cdf that all nodes
decode a C'(n, k) code where ¢ is the number of packets out
of a transmission group that a node receives. For a given
data size, k£, we may compute the probability that all nodes
receive at least k& packets with the source sending n. We
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may thus compute the expected group size for a given k
such that all nodes receive at least k packets. In Fig. 1 we
show the results of the calculation E[n] = 37 , i - F(i).
We terminated the summation at some z when the expected
value increased by less than 0.01%. We show the slope ()
and y-intercept (b) of a linear regression against E[n]. All
series fit a straight line very well. The coefficient of deter-
mination, R?, is at least 0.998 in all three cases [10]. A
value of R? = 1 indicates a perfect match. Fig. 2 shows
the code efficiency v = k/E[n]. We use this definition as a
measure of the overhead required to ensure, on average, that
all nodes receive the data packet (for C(1, 1)) or decode the
transmission group. Since v is relative to the message size
k, we may compare efficiency between different codes. As
one might expect, efficiency increases as the message size
k increases.

Fig. 3 shows the expected transmission group size such
that all receivers decode over link loss rates from 0.01 to
0.10. We see that the expected group size increases slightly
faster than linear for a given k.

A more interesting question is how many nodes success-
fully decode a group on the first transmission, and for those
nodes that fail, by how many packets they fail. Eq. 1 is
not suited towards these questions. We must develop a new
method of recursive tree analysis.

3. Recursive Tree Analysis

We wish to develop a general model for shared loss trees.
We do not restrict the trees to fixed node degree or constant
link loss. In our notation py is the uncorrected link loss
probability of node N. It applies to packet reception. We
set the root’s loss probability to 0. The sender never loses a
packet. We define the height of a node as the distance from
the root.



In this section, we present a recursive formula to com-
pute the probability mass function (pmf) that r leaf nodes
in an arbitrary multicast tree successfully decode a C'(n, k)
- FEC code on the first transmission. We use different type-
faces to denote a Set of nodes and a Family of node sets.

Lemma 2 (proof omitted) The probability that a leaf node
has r successful decodes of a C(n, k) FEC group given that
it successfully receives m packets is as follows. Pieqz(r |
m]=1ifr=1k<morr=0,m <k and Prsfr |
m] = O otherwise. This follows from the definition of a
C(n,k) code. The r = 0 case is the probability that the
node fails.

We define a function that generates families of permuta-
tion sets. The function W(IV, r) returns the family of sets
of the children of node IV, where each set has weight r.
This is equivalent to the problem of enumerating the per-
mutations of placing r marbles in |C(V)| urns where each
urn may hold at most m marbles. m is the number of leaf
nodes at or under N. A value of r = 0 for a child indi-
cates that no node at or under the child decoded. A positive
value indicates the number of leaf nodes that decode. These
disjoint sets span the state space of N’s children with r al-
located across them. We select the ¢¢% child of N as C,(NN).
Since N should be understood, we shorten the notation to
C;. When we sum over f € W(N,r), we iterate each set.
f; is the value assigned to C; for a particular set. We also
denote the link loss probability of C; as p;. We define the
binomial pmf as B(4, j, q) = (;)q(i'j)(l —q).

Theorem 3 For an internal node N, the probability that
r leaf nodes under N successfully decode a C(n, k) FEC
code on the first transmission, given that N receives m
packets, is given by

m<k,r>0
1 m<k,r=0

fl m
)3

fEW(N,r) I=1 s=0{

Blm. s, ) -P,[f,|s1}

Pylr | m]=

)

m>k

Proof: W(N,r) is a family of disjoint sets that span
the state space. f € W(IV, r), by definition, enumerates all
configurations where r leaf nodes may successfully decode.
If we can find the probability of each configuration and sum,
we will have the desired result.

Each element f, corresponds to a node. The value f, is
the exact number of successes that must occur at (if it is a
leaf node) or under (if it is an internal node) C;.
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Case I: C; is a leaf node. The probability that C; has ex-
actly f; successes given that it’s parent N attempts delivery

of m packets is P[f; | m] = 3 B(m,s,p,) - Pof(f; | 5]-
s=0

We partition the solution over s, the number of packets
C, receives. The probability C; receives exactly s packets
given that N sent m packets is given by the binomial term
B(m, s,p;). By Lemma 2, we know that P ;[f, | s] is
the probability that C; has f, successes given that it suc-
cessfully received s packets. By summing over all s from
0...m, we have found the desired probability for a specific
C,;. By taking the product over all [ elements of f, we find
the probability of the set. By summing over all sets, we find
the desired result Py [r | m].

Case II: C, is an internal node. This case, per se, does
not have any successful decodes. Only leaf nodes decode.
An internal node is a repeater between its parent and its
children. It allocates successes to its children based on
W(N,r). This case has three subcases. The first two sub-
cases terminate the recursion while the third case is a recur-
sive function.

Subcase ILA: m < k,r > 0. By the definition of
C(n, k), it is always false that any node decodes if m < k.

Subcase II.B: m < k,r = 0. By the definition of
C(n, k), itis always true that 7 = 0 nodes decode if m < k.

Subcase II.C: m > k. We note that this case is analo-
gous to Case I, above. We enumerate all permutations of
ways to allocate r successes over N’s children. This is the
same as the binomial term of P;[f; | m]. The second term is
now a recursive probability that each child has the allocated
number of successes. This repeats until the child is a leaf
node, at which time we may calculate the actual probability
and solve the system by back substitution.

|

In the case where all children are identical, we may sim-
plify this equation. We no longer need to generate all per-
mutations, but only unique combinations for f. We may
multiply by the multinomial of set f.

Nonnenmacher and Biersack [17] also compute the ex-
pected number of nodes in a multicast tree that receive a
packet on the first transmission in a non-FEC multicast tree.
Our equations here are a more general case. A C(1,1) code
in Eq. 2 yields identical values (albeit with more numerical
work).

4. Computing Expectation Values

We address computing three expectation values. We
begin with the expected number of nodes that decode a
C(n, k) code. Next, we consider the expected number
of packets at any given leaf node. Finally, we develop a
Markov model to compute the expected height of packet
loss.
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From Theorem 3, we may compute the expected number
of nodes in a tree that successfully decode a C(n, k) code.
Let there be T total leaf nodes in the tree. We may compute
the expectation value E[R] = ZI - P, 1]

Using the optimum C(n, k) codes from Section 2, we
computed Theorem 3, as shown in Fig. 4. Fig. 4 shows
the percentage of receiver that fail, E{Ry.y]/T, where
E[Rfeu) = T — E[R]. We used the FEC codes C(1,1),
C(6,3), C(11,7), C(15,10), C(26,20) at a link loss rate
of 1%. In Fig. 4, the value “0.000%” means 0% loss
to within double precision accuracy even though the scale
is logarithmic. We chose the FEC codes based on a bi-
nary tree of height 8 (256 receivers). We show the per-
cent node failures for a tree up to height 10 (1024 leaf
nodes). At height 8, the expected number of node fail-
ures is E[Rygqy) = {19.78,0.12,0.22,0.15,0.74} for each
FEC code in order of k value. At height 10, the values are
E[Rfqu) = {97.91,1.10,2.31,1.83,9.59}.

If we consider only the first transmission of a group,
a poorly chosen FEC code may perform far worse than
no FEC code at all. For a 1% per link loss rate in a bi-
nary tree of height 10 without FEC, we calculated that
E[Rjqu] = 97.91. For the code C(8,7), E[Ryqu] = 179.
Over 1.8 times more nodes failed with FEC than without
it. If C(8,7) were a systematic code, the nodes would
have usable packets but even still, more nodes would po-
tentially ask for retransmission than without FEC (depend-
ing on the underlying multicast protocol). As we see from
Fig. 6, when a node fails on C(8,7) at height 10 with 1%
loss, it most likely is only missing one packet. However,
between the 179 failed nodes, there is very little correlation
between lost packets. The source must retransmit most, if
not all, of the group. In Section 5, we look at packet corre-
lation in more detail. The present work, however, does not
include a detailed analysis of retransmission behavior.
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Computing the expected number of packets received at
a leaf node is more challenging. We restrict ourselves to a
tandem tree (a tree of degree 1, a path). We wish to find the
probability that the leaf node received m packets given that
the root sent /.

Our simplification to a tandem tree makes the equations
tractable, but has one significant limitation. We may com-
pute the expected number of packets received (or missing)
at a given leaf node, but we do not know the correlation
between leaf nodes. In Section 5, we address this issue.

Theorem 4 For a tandem tree of total height H, the prob-
ability that the leaf node received m packets given that the
sender sent | packets is



Figure 7. Markov chain for binary muiticast
tree

i
z B(l,i,ph) . Ph+1[m|i] h<H

i=m

B(l7m7ph)

Pymll] = 3)

h=H

Proof: The h < H recursive term sums a binomial
term that an internal node sent ¢ packets to it’s child. These
are all the possible ways that the child could receive at least
m packets. The h = H term is the probability that with the
H — 1 node sending [ packets the leaf node receives only m
of them. |

To compute the expected number of packets the leaf node
is missing when it fails to decode a C(n, k) code, we need
to look at conditional probabilities. We wish to find the
probability that the H — 1 node sent m packets and the leaf
node failed to decode the transmission group. For m < k,
this is just the probability that the parent sent m packets.
When m > k, we must find the probability that leaf’s parent
sent m packets and that the leaf node received fewer than &
packets.

Lemma 5 (proof omitted) For a tandem tree, the probabil-
ity that a leaf node fails to decode a C(n, k) code after be-
ing sent m packets is Plm N Fail] = P[m N Faillm >
k] + P[lm|m < k].

We may compute the first term from Theorem 3. By
summing P[1|m] for m = k...n, we find the cdf F[1|m]
that the leaf node in our tandem tree decoded with m > k
packets. Using the relation that Plm N Faillm > k] =
1 — F[1|m], we have solved half of Lemma 5. We may
compute the second term from the definition of conditional
probability, P[m|m < k] = P[m,m < k]/P[m < k] and
Theorem 4.

We plot the results for a binary tree with a C(8,7) code
using loss rates of 0.1%, 1.0%, 5.0%, and 10%. Each loss
rate covers a tree of heights 1 to 10. Fig. 5 shows the mean
number of packets received in a group of 8. The vertical
bars represent the variance with the mean in the middle.
Fig. 6 shows the expected number of packets received when
a node fails to decode.
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We now turn our attention to a more general development
for the probability of packet loss at height h in a multicast
tree. We wish to know the most likely height of packet loss.
We proceed by constructing a transient Markov chain. It ap-
plies to FEC-enhanced trees to the extent that such trees lose
individual packets in the same manner as non-FEC trees.
We shall assume a fixed node degree d and loss probability
p. One may generalize to arbitrary configurations.

As shown in Fig. 7, we define a network V to be a trans-
formation of the original multicast tree 7 as follows. Let
there be r(h) nodes in T at height h. For h > 0, there are
r(h) + 1 nodes at height h in N. We number nodes vy, ;
fromi = 0...7(h). The subscript 7 denotes the number of
nodes at height h in T that receive a packet. At each height,
node 0 is an absorbing state. It indicates that all packets sent
from height b — 1 were lost at h.

Each directed arc in A has a weight equal to the proba-
bility of moving between end nodes v(;_1),; and vs,; where
0 < j < d-i. Since loses between adjacent tree levels are
independent, the weight assigned to each arc is the binomial
pij = P[Xp = j|Xp—1 =i} = (4)p?*~7 (1 - p)?, which
is the single-step transition probability. We always have the
initial condition that P[Xp = 1] = 1.

Theorem 6 In a Markov network N as described above
where h is a node’s height, we may find the probability of
any loss at height h, Pynylh] and the expected height of
packet loss, E{H] as

at di—1
Panylh] = > > pij - P[Xp =1] )
i=1 j7=0
h h
E[H] = Zi'Panym/ZPany[i] )
i=1 i=0

Proof: Eq. 4 finds the probability of any packets loss
at height h. For each sending node ¢, we sum the probability
that our final state j < d - 4. Eq. 5 is a standard expectation
value. n

Fig. 8 shows the expected height of packet loss for bi-
nary and ternary trees over 7 loss rates. The binary tree has
a maximum height of 10 (1024 leaf nodes) and the ternary
tree has a maximum height of 6 (729 leaf nodes). We see
from the graphs that for p < 0.3, the expected loss height
is closer to the bottom of the tree than to the top. This
would argue for subcasting repairs to leaf nodes, similar to
the findings of Linder et al. [13].

The Markov construction also allows us to compute
other interesting characteristics of multicast trees. We may,
for instance, compute the probability of decay Pgec[h],
equilibrium P.4[h] and growth P,,,[h] at each tree level.
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dh
Puglh] = > pu- P[Xn = i] (6)
=1
" di
Pyrolh] = > > pij - P[Xp =] )
i=1 j=i41
d" i1
Picclh] = e(h)+ > pij-PXn=i] (8
=1 j=0
e(h) = e(h— 1)+ P[Xp_1 = 0] )
e(0) =0

e(h) is a normalization term such that Pgecqylh] +
P.glh] + Pyrowlh] = 1 forall h.

Two other interesting expectation values to compute are
the expected number of node failures per level E[N}] and
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the expected growth rate of the tree per level E[G)]. E[Ny]
is related to the number of NAKs generated in receiver ini-
tiated negative acknowledgment multicast. E[G}] gives a
sense of how fast a tree will deteriorate. For non-FEC trees,
it will always be less than the node degree for positive loss
rates. We use the notation f(z)! to mean the maximum of

f(z)orl.

dh
P[N, = k] = Z Di(ar+1—k) - P[Xp =] (10)
et
dh+1)
E[Na] = Y k- PNy =] (I
k=1
S S G- ) piy - P[Xa = i)
E[Gy] = : J
[G] ElGr ]
E[Go) = 1 (12)

Fig. 9 shows Eq. 11 for a binary tree over 5 loss rates.
It shows us what we would intuitively expect. We see that
for the lower loss rates, nodes fail in roughly linear propor-
tion to tree height. At higher loss rates, nodes fail faster
and earlier in the tree. Fig. 10 plots Eq. 12. Since these
are for a binary tree, the upper bound on the slope is 2.
For the lower loss rates (0.01%, 0.1%), the plots are almost
exactly two (they overlap in the graph). The 1% series is
slightly worse. We would expect that for multicast trees
that maintain a near exponential growth, the addition of ex-
tra error recovery might not be necessary. For plots such as
the 10% or 30% series which are substantially under expo-
nential growth, FEC may be a viable solution.



5. Leaf Node Packet Correlation

In Section 4, we found how to compute P[m], the proba-
- bility that any given leaf node received m packets. It should
be clear that the analysis of that section does not give any
information about the correlation between two nodes. We
may find the expected number of packets at a node, E[M].
Naively, one may say that the expected number of nega-
tive acknowledgements (NAKs) would be n — E[M]. But,
two nodes with the same E[M] may not share any common
packets in a sequence. In which case, the number of NAKs
would be n. This has a significant effect on, among other
things, NAK generation in reliable multicast. In this sec-
tion, we develop an analysis of packet correlation, first for
non-FEC trees and then for FEC-enhanced trees.

In general, we restrict our analysis to time invariant loss
rates and regular full trees. These restrictions make the no-
tation more tractable. When we say a packet is “held in
common” at height h, we mean that all nodes at height h
successfully received that packet. A “shared loss multicast
tree” means a tree where we explicitly account for depen-
dent packet loss. Each node v; has a packet loss probability
p; that applies to packet reception. We define the node fam-
ily of node v as the set of v and it’s adjacent children. Sib-
lings of node v are those nodes that share the same parent
as v.

5.1. Example

We begin with an example to illustrate the objective
of our current calculations. The example introduces the
present material and also ties together material from pre-
vious sections.

Our example studies a multicast tree with 256 receivers.
The tree has a special shape, such as to make the calcula-
tions from Section 5.3 computationally easier. In Fig. 11,
the root has 64 children. There is zero loss between the root
and each child. Each family under the root has four leaf
nodes and uniform link loss. In our example, we use a 1%
link loss rate. This structure allows us to treat each family
independently, which is a great simplification to Eq. 13.

From Section 2, we calculated an optimum FEC code
for the given tree. We chose .our data size to be 3. Eq. |
and Lemma 1 predict an expected group size of 4.42. We
will use the FEC code C(5, 3). For non-FEC transmission,
the same equations predict a group size of 2.07. We would
expect to need to send each data packet twice before every
node received it. Using our definition of efficiency v =
k/E[n], the FEC code has ¥ = 0.6 and the non-FEC code
has v = 0.5. The FEC code can transmit groups of three
packets to all receivers with less overhead than the non-FEC
code.

From Section 3, we find that the expected number of leaf

158

Figure 11. Example tree structure

decodes is 255.98 for C(5,3). For non-FEC C(1,1), we
find the expected number of leaf decodes is just under 234.
About 22 nodes out of 256 will fail on each packet.

Imagine that we have a transmission window of 3 data
packets (conveniently chosen to match our FEC code). Let
us examine the results of Section 4. From Lemma 5, we
compute for the C'(5, 3) code that any given node holds 2.98
packets when it fails to decode. It only needs 1 additional
packet. This result, combined with the result that 255.98
nodes decode on average, would lead one to guess that only
1 packet might be missing on retransmission. Similarly for
C(1,1), we find that in a sequence of 3 packets, any given
node receives 2.94 packets per transmission. There are 22
nodes, on average, that fail. This probably means that all
three packets must be retransmitted.

The equations of this section remove the “guess” and
“probably” from the analysis. By examining the packet cor-
relation at receivers, we may calculate precise expectation
values and pmfs. The equations of this section tell us that
in a sequence of 3 data packets without FEC, the expected
number of packets held in common is 0.12. In other words,
all three data packets must be resent on each transmission.
This corresponds to our earlier calculation that we would
need to send each packet 2.07 times until it is received. In
the case of our C(5, 3) code, we find that the expected num-
ber is 4.95 packets are held in common. On those occasions
when a node fails, most of the time only a single packet
from the group is missing.

5.2. Non-FEC Analysis

Lemma 7 (proof omitted) In a shared loss multicast tree,
let the root send a sequence of n packets over the tree. If
at height h, my, packets are held in common, then mp1 <
mp, packets are held in common at height h + 1.

Lemma 8 [n an independent loss multicast tree of height
I (i.e. a single family), the root node vy sends sequence
S of n packets to it’s children v; € C(vg),i = l...c over
links with loss probability p;. The probability that all ¢ chil-



dren hold the same m packets in common is Pipg[m] =
()™ (1 = p)" =™ where p = TT;_; (1 — p:)

Proof: Represent the system state as a reception ma-
trix where each row is a packet in .S and each column is a
child node. The array elements a;; = 1 — p;.

The probability that a particular packet ¢ is received by
all nodes is the row product p; = [}, ai; = [];_,(1 -
p;). The probability that any m out of n packets are re-
ceived by all nodes is the binomial term () p™ (1 —p)"~™,
where we drop the subscript ¢ and assume time-invariant
packet loss probability. ]

We now wish to extend Lemma 8 to multiple indepen-
dent families. By Lemma 7, we know that the families of
two siblings, call them v; and vy, can only have at most
those packets in common that v; and v2 have in common.
We wish to.compute the probability that the children of vy
and vy have the same m packets in common, knowing that
they were sent the same sequence of common packets. We
simply ignore any packets not held in common by v; and vs.
This assumes no loss correlation between packets, which
may not hold when losses are related, for example, to buffer
capacities.

Lemma 9 Let there be f families rooted at height h —
1,0 < h. Let family j have c; children. We denote the
link loss probability of child i of family j as p;;. The
probability that all nodes at height h.receive the same
packet given that all parents transmitted the packet is pp =

T, T, (1 - pja)

Proof: This follows as an easy extension of the proof
of Lemma 8. We claim that when one only considers the
families rooted at height h — 1 and packets held in com-
mon, the packet loss of each family is independent of other
families. Let v,_; and up_1 be two distinct nodes at height
h — 1. Let v ; and up ; be the sets of children of nodes
vp—1 and up_1, respectively. By our premise, all nodes at
height b — 1 have the same packet . Since the families
(sets) {vh—1,vn,i} and {up_1, up;} are disconnected com-
ponents, there can be no dependence between them for all
packets held in common at i — 1.

Since each family rooted at height A — 1 is independent
in this regard, imagine a set of f reception matrices. The
probability that a packet in row i is received by all families
is the product of all row products for row 1. ]

In the case where all nodes have the same packet loss and

all nodes have degree d, one could express pp = (1 — p)dh.
One can see that as the breadth of the tree increases, the
probability that all nodes hold a particular packet in com-
mon rapidly diminishes. In the case of reliable multicast,
this plays an important role. To reduce shared loss, one
may be tempted to reduce depth and increase width for the
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same number of receivers. As was desired, shared loss (cor-
relation) is decreased, and as such it becomes less likely
that receivers hold the same set of packets. An interesting
problem would be to compute the optimum breadth versus
height for a given receiver set size and link loss.

Theorem 10 In a shared loss multicast tree where the root
sends a sequence S of n ordered packets, the probability
that the same m packets are held in common by all nodes at
heighth =0islifm =nor0ifm # nandforh > 0is
Prm] = 321 B(i,m, 1 — pp) - Pu-ali)

Proof: From Lemmas 8 and 9, we claim that the bino-
mial term is the probability that all nodes at height h receive
the same m packets given that their parents sent the same ¢
packets. It is analogous to the proof for Lemma 8. Since pp,
is the probability that all nodes at height A hold a particular
packet, the binomial term is the probability that all nodes
at height i hold the same m out of 7 packets in common.
We partition the space over the probability P, _[¢] that all
parents hold the same 7 packets in common and sum. |

5.3. FEC-enhanced Analysis

We now wish to include the effects of FEC erasure cor-
rection at leaf nodes. Because of FEC, there is a chance
that a leaf node will have all n packets of a sequence, even
if it’s parent only had m packets, k < m < n. This violates
Lemma 7. Thus, our above analysis for non-FEC trees does
not hold. We may construct some approximations through
column transforms of p, but for a general exact solution, we
need to modify Theorem 3.

Below, we use the concept of a packet distribution ma-
trix (pdm), similar to the reception matrices previously dis-
cussed. Each row is a packet 7 out of the sequence of n
packets. Each column is a node j out of the d* nodes (for
a full regular tree). The pdm indicates the presence of a
packet if element a; ; = 1 or the omission of a packet if
a;; = 0. The row product of a pdm is either O or 1. The
column sum (number of packets at a node) is 0...n. If the
column sum for column j is at least k, then node j decodes.

For each call to our new recursive function, we specify
an exact pdm for the leaf nodes. If we feed in, for example,
all pdm’s that have 2 packets in common, we may compute
the probability that there are two packets in common. Since
the pdm specifies the exact state at the leaf nodes, we may
also compute the probabilities that r nodes decode, as in
Theorem 3. We may also compute the joint distribution that
r nodes decode with m packets in common. For that mat-
ter, we may compute almost any desired statistic concerning
packet distribution at leaf nodes.

The unfortunate aspect of this method is that we must
generate all permutations for a given condition and feed
them through the root node. The pdm’s must also obey rules



about allowable packet distributions. If we wish to generate
all pdm’s for, say, 2 packets in common, we must generate
the pdm’s for actual packet reception at leaf nodes with the
understanding that any column with m > k packets wilj
decode and actually have all n packets. If there are T total
receivers, then the pdm is an n x T 0-1 matrix. There are
27T permutations. We are studying ways to reduce the state
space.

We use the notation of R for a matrix and r as a
vector (column unless otherwise noted). The typeface C
still denotes a set. We take on an object-oriented nota-
tion with method selection. Matrices have the method
R. cols — integer, which returns the number of columns
in R (the number of rows is fixed at n). A matrix also has
R.req(i) = {0, 1}, which indicates if packet i is required
by the pdm R. We may select a specific column from a ma-
trix by R; — wector, which returns column 7 as a vector.
We define the matrix method R.. split(C(V),1) — matriz.
This function splits out the portion of matrix R that applies
to the I**-child from the given set.

The R.req(z) method may be computed as R.req(z) =
\/?:'fols ri;, the inclusive OR of row i. If any child gov-
erned by R requires packet i, then R.req(i) = 1. If no
child requires packet %, then the function returns 0. As we
shall see below, the matrix R will be partitioned such that
only those columns that apply to the leaf nodes under a node
are communicated to that node. Thus, the required rows will
vary as the partitioning progresses.

Analogous to Theorem 3, we will need a function to dis-
tribute packets over children in the tree. The new function
W(N, R, m) serves this purpose, similarly to W(N,r).
R is the required leaf node pdm. m is the packet recep-
tion vector for node V. It indicates which packets IV re-
ceived from its parent and thus may send to its children.
W(N, R, m) returns a set of matrices A, which are allow-
able packet transmission given R and m. Each column of
A is achild of N. W(N,R,m) = {A | V child j :
ai; € {R.split(C, j).req(i), m;} }. If packet i is required
by any leaf node under child j then we must transmit it
to and it must be received by child j : a;; = {1}. If
packet i is optional for all leaf nodes under child j, then
a;; may be {0} or possibly {0, 1} if N received packet i.
From the distributions of higher nodes, we may not have re-
ceived an optional packet. We note without proof that we
always receive required packets by these rules. That is, if
R.split(C, j).req(z) = 1, thenm; = 1.

Theorem 11 Let R be a packet distribution matrix that
specifies which packets are to be received or lost by each
leaf node in a shared loss multicast tree witha C(n, k) FEC
code. At the root, R is ann x T matrix, where T is the total
number of leaf nodes. Let ma be a column vector that indi-
cates which packets were received successfully by node N.

160

At the root, m is the all 1’s vector. If N is a leaf node, the
probability that it receives R is given by Py[R | m] = 0
fR #mor PN[Rjm] =1ifR = m. If N is not a leaf
node, then

F. cols

(p,(iml—mn (1= p)F

L P, [R.split(C, 1) | Fl])

PN[R | m] = F%:W

=1

(13)

Proof:  This form is essentially the same as Theo-
rem 3. We sum over each component of W, which enu-
merates the allowable spanning set of packet transmissions
from node N to its children. The product selects each col-
umn vector from F € W(N, R, m). Each child must ex-
actly match the distribution specified in F', so we multiply
the probabilities that child ! lost exactly |m| — |F,| packets
and received exactly |F;| packets. The operation |v| indi-
cates the weight (norm) of the vector. Each element of the
column vector F; is either 1 to indicate the presence of a
packet or O to indicate the omission of a packet.

Now that we have the probability that the child node C;
received the packet vector F;, we need to multiply by the
probability that the leaf nodes under C; receive the desired
pdm specified in R. Via the split method, we extract only
those columns of R that apply to C; and its children.

After appropriate recursion, we shall eventually reach
a leaf node. At this point, we may compare the received
packet vector m with the desired pdm vector (by the time
R reaches a leaf node, the matrix is reduced to a vector). If
they are equal, the leaf node returns a true value of 1. The
recursion that lead to the leaf node was a valid recursion.
If the vectors do not match, the recursion was invalid and
the leaf node returns 0. Since this value is inside the prod-
uct over [, a value of 0 will remove the invalid distribution
from the overall probability calculation. In general, WW may
distribute optional packets to a leaf node, so this check is re-
quired. An actual implementation would have penultimate
nodes distribute only m. |

6. Conclusion

We found seven main results. In Section 2, we calculated
the cdf Fv[i] that all nodes decode an FEC code C'(i, k).
We also computed the expected transmission group size
E[n} such that all nodes decode. In Section 3, we extended
our results to the pmf Py [r|m] that r leaf nodes at or un-
der node N decoded a C(n, k) code given that N received
m packets in the group. In Section 4, we developed three
results. First, we found for a tandem tree Py,[m|!], the pmf
that the leaf node at height h holds m packets in given that
the source sent ! packets. Second, we developed a Markov
tree to analyze the expected height of packet loss. Third,



using the Markov tree, we found the pmf P,y [h], the prob-
ability of any packet loss at height h and the corresponding
expectation value E[H]. In Section 5 we found the pmfs
for packet correlation between nodes for both non-FEC and
FEC trees. In a non-FEC tree, the pmf P, [m] that m pack-
ets are held in common at height h uses a simple recursive
formula. For an FEC tree, we gave the pmf Py[R | m]
that the leaf nodes under node NV received the packet dis-
tribution matrix (pdm) R given that IV received the packet
vector m.

In Section 5, we also presented an example that ties to-
gether our results. It showed how to compute a good FEC
code for a given multicast tree and data size k. The exam-
ple then ran through the calculations of the other sections
and showed how the results supported one another. It also
compared the FEC results with non-FEC results to show the
expected performance gain.

Future work could extend our analysis to include second
order statistics as a measure of FEC code stability. The re-
sults in Section 5 for FEC trees, while tantalizing, are com-
putationally infeasible because of the extremely large state
space for the pdm (27, T being the total number of leaf
nodes with a C(n, k) code). Further work may be able to
reduce the state space by exploiting symmetries in the pdm
based on row and column permutations. Our analysis only
touched on retransmission performance and a more detailed
analysis of specific FEC multicast schemes is in order. In
particular, we would like to see an analysis of RTP with
redundant encodings [5, 19]. This encoding structure has
correlation between packets, since redundant information is
piggy-backed with message packets. Also along these lines,
we would like to see burst loss analysis with Gilbert channel
models.
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