
Congestion Control Performance of a Reliable Multicast Protocol

Dante DeLucia
HRL, LLC

3011 Malibu Canyon Road
Malibu CA 90265

email: dante@hrl.com

Katia Obraczka
USC Information Sciences Institute

4676 Admiralty Way Suite 1001
Marina Del Rey, CA 90292

email: katia@isi.edu

Abstract

This paper evaluates the congestion control performance
of Pseudofed, a congestion-controlled, reliable multicast
transport protocol for bulk data transfer. Pseudofed’s con-
gestion control mechanism is based on the concept ofrepre-
sentatives, a small, dynamic set of multicast group mem-
bers. By reducing the congestion control problem to a
bounded set of receivers, representatives allow the point-
to-point congestion control model used by unicast protocols
like TCP to scale to larger multicast groups. Other fea-
tures that contribute to the scalability of Pseudofed’s con-
gestion control algorithm are: (1) attempting to distinguish
between correlated and uncorrelated packet losses, (2) not
requiring complete knowledge of the multicast group, and
(3) not exchanging control communication with congestion-
free subtrees.

1. Introduction

The increasing popularity of group communication ap-
plications such as multi-party teleconferencing tools and
information dissemination services has motivated the de-
velopment of reliable multicast transport protocols layered
on top of IP multicast for efficient multipoint data distribu-
tion. While TCP’s point-to-point model treats multipoint
data delivery as a collection of point-to-point flows, proto-
cols using IP multicast avoid sending duplicate data repeat-
edly over the same network links.

The Internet relies on applications performing conges-
tion control to react to network congestion and avoid con-
gestion collapse. Most applications in use on the Internet
employ TCP’s congestion control algorithms [8]. To allow
multicast protocols to be safely deployed on the Internet,
it is imperative that they incorporate mechanisms for han-
dling congestion. While many reliable multicast protocols
have been proposed for the Internet, few of these protocols
have considered congestion control.

This paper presents an evaluation study of the congestion
control algorithm employed byPseudofed, a congestion-
controlled, reliable multicast transport protocol for bulk
data transfer. Pseudofed resulted from incorporating the
representative-basedcongestion control algorithm we de-
scribe below into the Multicast Dissemination Protocol
(MDP) [11].

2. Congestion Control Algorithm

Our algorithm is based on the observation that in a mul-
ticast distribution tree a small set of bottleneck links cause
the majority of congestion problems. The algorithm se-
lects a small set of grouprepresentativesto represent the
congested multicast subtrees. By concentrating congestion
control efforts on the congested subtrees, representatives al-
low the source to apply a point-to-point congestion control
model to large multicast groups.

Congestion is managed by combining packet drop and
measured queueing delay delay. Queueing delay serves a
twofold purpose. By itself, it allows us to react to con-
gestion before packet losses occur. When combined with
packet losses, it allows us to distinguish correlated and un-
correlated packet losses. If a packet loss occurs without
detectable queueing, it is assumed to be uncorrelated. If
queueing is detected, congestion avoidance measures are in-
voked. If a packet loss occurs in conjunction with measured
queueing, congestion recovery is attempted by multiplica-
tively decreasing the transmission rate.

Probabilistic and representative suppression is used to
control feedback generated by multicast group members.
The suppression mechanism makes use of immediate feed-
back from dynamically selected representatives to allow
loose constraints on feedback suppression timers. Conse-
quently, the feedback timer protocol generates much less
traffic by not requiring round-trip time (RTT) computation
between all group members, or even between the source and
all receivers.



2.1. Representatives, Data Source and Receivers

At any given time, a multicast group member can be act-
ing either as a receiver, representative, or the data source.

Representatives Representatives play a key role in both
feedback generation and congestion control efforts. Their
feedback is immediate which allows the data source to re-
spond to congestion quickly. Representatives are also in-
strumental in suppressing feedback from other receivers.

Figure 1 illustrates the concept of representatives using
an arbitrary multicast distribution tree as example. Fig-
ure 1a shows the multicast tree with the source at the root
of the tree and receivers at intermediate nodes and leaves.
When our algorithm starts (Figure 1b), the representative
set is empty and, since there is no indication of congestion,
all participating receivers are eligible to become representa-
tives. The source selects the receiver from which it receives
feedback first (Figure 1c). Since receiver’s feedback timers
are initially set to an arbitrarily large value (currently, 1 sec-
ond), the source will probably receive feedback from the
closest receivers first.

When congestion is detected in the right subtree (Figure
1d), which is not yet covered by the current representative
set, a new representative is selected to cover the newly con-
gested subtrees (Figure 1e). Newly congested subtrees will
likely generate more feedback when congestion is first de-
tected since feedback control relies exclusively on proba-
bilistic suppression until a representative is selected.

Data Source The source multicasts data at a variable
rate. Based on feedback from the group, it adjusts the rate
dynamically to avoid network congestion, while trying to
make use of available network bandwidth.

The source is responsible for the representative selec-
tion process and for advertising the current representative
set to the group. Based on feedback received, the source
also computes the group’s largest round-trip time (GRTT).
We describe how the GRTT is computed in Section 2.2.

Receivers Upon receiving a data packet, receivers (in-
cluding representatives) send feedback to the source in the
form of positive and negative congestion indicators. Al-
though these can be thought of as ACKs and NACKs, we
will use the terms Congestion Clear (CC), and Congestion
Indication (CI) to avoid confusion with reliability mecha-
nisms. Unlike feedback from representatives, receiver feed-
back is subject to suppression. We discuss our suppression
mechanism in Section 2.2 below.

CCs are used to detect congestion as it builds in the net-
work before packet drops occur. CIs provide feedback in
the case of packet drops, indicating that congestion has oc-
curred and has been detected by the receiver.

��
��
��
��
��

��
��
��
��
��

Receiver Receiver

Receiver

Receiver

Receiver

Receiver

ReceiverReceiver

Source

(a)

��
��
��
��

��
��
��
��

Receiver Receiver

Receiver

Receiver

Receiver

Receiver

ReceiverReceiver

Source

(b)

��
��
��
��
��

��
��
��
��
��

Receiver Receiver

Receiver

Receiver

Receiver

Receiver

ReceiverReceiver

Source

Representative

(c)

���
���
���
���

���
���
���
���

Receiver Receiver Receiver

Receiver

Receiver

ReceiverReceiver

Source

Representative

Congestion

Receiver
Congestion Detected

(d)

��
��
��
��
��

��
��
��
��
��

Receiver Receiver Receiver

Receiver

Receiver

ReceiverReceiver

Source Congestion

Receiver

Representative

Representative

Congestion

(e)

Figure 1. An example multicast tree illustrat-
ing the concept of representatives.



2.2. Feedback Generation and Control

The congestion control algorithm can be divided in two
parts: (1) feedback generation and control and (2) source
rate adjustment. Feedback generation and control is per-
formed by representatives and receivers, while rate adjust-
ment is performed at the source based on feedback from the
group.

Suppression Suppression refers to the canceling of
scheduled feedback in response to the receipt of another
receiver’s feedback. While non-representative receivers’
feedback is subject to suppression, feedback from represen-
tatives is immediate and therefore not subject to suppres-
sion. Probabilistic suppression complements representative
suppression: it limits feedback from multicast subtrees not
yet covered by the current representative set.

Non-representative feedback is scheduled over a random
interval usingsuppressiontimers. If suppression timers are
set long enough, feedback from representatives can traverse
the entire group suppressing any non-representative feed-
back. Clearly, there is a tradeoff when setting suppres-
sion timers: the longer they are, the more feedback is sup-
pressed. However, long suppression timers mean that feed-
back from receivers experiencing congestion in parts of the
multicast tree not yet covered by the current representative
set will take longer to get to the source.

Suppression Timers Suppression timers consist of two
components. The first is a deterministicwait period, and the
second is a randomsuppressioninterval. The purpose of the
wait period is to allow time for representative feedback to
traverse the group thereby suppressing feedback from non-
representatives. The purpose of the suppression interval is
to space out feedback responses and allow probabilistic sup-
pression to reduce the amount of feedback.

The wait and suppression intervals, which are parame-
ters used by our simulator, are set as a percentage of the
estimated GRTT. The tradeoffs between various choices of
wait and suppression intervals were studied in [6].

GRTT Measurement GRTT is maintained by keeping a
table the longest RTTs heard. An entry will stay in the table
for a specified period of time before it it timed out. The
GRTT is the largest value in the table at any given time.

Representative Selection The source selects representa-
tives based on feedback received. Over the life of a multi-
cast group, the representative set changes to reflect conges-
tion as it moves to different parts of the multicast distribu-
tion tree.

At startup, any receiver providing feedback is eligible
for selection as a representative. This means that a receiver

sending a CC may be selected as representative as long as
no CI is received. As network conditions change, feedback
received by the source is used to update the representative
set.

Once the representative set is non-empty, if all feed-
back comes from current representatives, no new represen-
tative is selected. If the source receives feedback from non-
representative receivers, these receivers are eligible to be-
come representatives.

After a full representative set has been obtained, only
CIs qualify a receiver for selection as a representative. In
addition, when the representative set is full and a new rep-
resentative is selected, an existing one must be ejected from
the current set. To select a candidate for ejection from the
representative set, we currently use a LRU algorithm based
on the time since the last CI was sent. This criteria is based
on the assumption that a representative that has not sent a
CI recently is not currently experiencing congestion. To
avoid excessive fluctuation of the representative set, the cur-
rent implementation of our congestion control algorithm re-
quires that representatives stay active for at least 4 GRTTs.

The source multicasts the current representative set to the
group after a change in the set.

2.3. Rate Adjustment

The rate adjustment mechanism consists of two phases.
The first is the “slow-start” phase, conceptually borrowed
from TCP. As soon as congestion is detected, the algorithm
reverts to its “congestion avoidance” phase.

Initially, the source transmission rate is set to a pre-
defined minimum rate,ratemin. The transmission rate is
never allowed to drop below this value. This minimum rate
is administratively defined.

Slow-Start The slow-start phase attempts to quickly find
the available network bandwidth. Initially the transmis-
sion rate is set toratemin and is increased by1

2
every

time interval, wheretime interval is a multiple of the
current GRTT, ortime interval = I �GRTT . Currently,
I is set to 4. Clearly, the higherI , the slower the rate is
increased. The current rate increase is on the conservative
side and attempts to avoid packet loss by increasing the rate
too quickly.

Slow-start is terminated when a CI is received, or when
congestion is detected using information gleaned from CCs.
In either case, the transmission rate is reduced by half, and
the algorithm switches to the congestion avoidance phase.
We explain how we derive congestion information from
CCs below.

Congestion Detection When the source receives a rep-
resentative feedback message, it examines the message to



determine if congestion exists in the network.
We use adelay-basedcongestion metric inspired by TCP

Vegas’ congestion avoidance mechanism [1]. The delay-
based metric measures the amount of data queued in the
network. The number of packets queued in the network,
packetsqueued, is given by

packetsqueued =
(rttcurrent � rttmin)� rate

packet size
(1)

whererttcurrent andrttmin are the worst and minimum
RTT measured by the source so far,rate is the current trans-
mit rate, andpacket size is the size of a data packet.

If packetsqueued > �, the source has an indication that
congestion is building, and decreases its transmission rate.
Otherwise, ifpacketsqueued > � the rate is increased.
There is an obvious tradeoff in setting�: if it is set too
low, the congestion avoidance algorithm becomes too con-
servative. On the other hand, if it is set to a large number,
congestion can lead to packet drops. We currently set� and
� to 1 and 3 packets respectively based on the TCP Vegas
experiments reported in [1].

Adjusting the Rate We perform fine-grain rate adjust-
ment, i.e., adjustment after each packet transmission, by
controlling the rate indirectly via anacceleration. Each
time a feedback packet is received, the acceleration is ad-
justed. Each time a packet is sent, the rate is adjusted ac-
cording to the transmission time and the acceleration.

If the acceleration is positive, the rate increases. If it
is negative, the rate decreases. CIs decrease the accelera-
tion, while CCs increase it. A CI combined with a queueing
indicator will immediately set the acceleration to a nega-
tive value. This allows independent handling of multiple
CIs. CCs will have the effect of gradually overriding any
negative acceleration due to CIs. The more CCs that are
received, the faster the negative acceleration is overcome.

In designing a rate adjustment mechanism for our con-
gestion control protocol we chose to take a practical ap-
proach and use feedback from our simulation experiments
to tune the general linear increase-multiplicative decrease
rate adjustment approach. The resulting rate adjustment
mechanism works as follows.

When aCI combined with queueing indication is re-
ceived, the acceleration is set to decrease the rate by half in
the nexttimeinterval, wheretime interval = I�GRTT .
Like in the slow-start phase,I is set to4. The new acceler-
ation is computed as follows:

accel = �

rate

I �GRTT
(2)

On receipt of CC indicators, the transmit rate is increased
by �rate within the next GRTT if no queueing is detected.

Since the source may receive multiple CC indicators, we
want to increase by�rate only if every representative sends
a CC. Consequently, in response to any one CC, we increase
the acceleration by:

�accel =
�ratemax �

rate
GRTT

� accel

representative set size
(3)

In the case where queueing is detected by a CC, the ac-
celeration should decrease, but not as sharply as in the case
where a CI is received. A CC with queueing indication de-
creases the acceleration as follows:

accel = �I �
�ratemax � rate

GRTT
(4)

3. Congestion-Controlled, Reliable Multicast

Pseudofed is a combination of the MDP framework [4]
and the independently developed representative-based con-
gestion control mechanism just described. Instead of the
fixed rate used in MDP, the rate is controlled by the conges-
tion control mechanism and is adjusted after each packet
transmission.

3.1. The Multicast Dissemination Protocol (MDP)

The Multicast Dissemination Protocol (MDP) [11] pro-
vides a reliable multicast framework for file distribution.
MDP evolved from the IMM image multicaster, a protocol
used in disseminating satellite image files over the MBone.

The MDP sender fragments the file to be transmitted into
a sequence of MDP maximum data units (MDUs) which
are multicast to the group using the UDP/IP multicast suite.
MDUs are sent at the transmission rate set by the sender
application, which can also control the interval between file
transmissions. MDP receivers assemble the received data
units into the original file, which can be archived or pro-
cessed using image viewers or text processing tools.

MDP’s recovery mechanism works in rounds: after
transmitting a file, the source asks receivers for retransmis-
sion requests. A receiver who has detected sequence num-
ber gaps schedules a retransmission request which gets mul-
ticast if no other receiver has requested the same retrans-
mission. MDP also provides an operation mode in which
receivers may request repairs at any time during the trans-
mission of a file. The MDP source can also request ACKs
from receivers, who respond with information about their
current state.

MDP allows sites to join and leave the multicast group.
New sites announce their presence by multicasting a join
packet to the group. Currently, MDP does not have any
mechanism to prevent late comers from requesting retrans-
mission of old packets.



3.2. Congestion Control and MDP Interface

Pseudofed uses MDP lost packet reports as the basis for
CC and CI information. Fields where added to MDP head-
ers to compute round trip time. For CC, the lost packet re-
ports simply report zero packets lost, but otherwise are the
same.

4. Simulations

Internet multicast is in a state of flux, so we cannot as-
sume that whatever conditions we study now will necessar-
ily match the future state of the Internet multicast infrastruc-
ture. What we can do is study our protocol under a variety
of network conditions and evaluate its performance.

In this section we present the results of simulation ex-
periments we conducted to evaluate Pseudofed’s perfor-
mance. Simulations allow us to run controlled experiments
with Pseudofed in larger networks and explore the vari-
ous dimensions in the multicast congestion control design
space. Our simulation parameters include different link
bandwidths and propagation delays, different competing
traffic patterns, various multicast group densities and rep-
resentative set sizes. We simulated a variety of network
conditions including highly congested networks where link
bandwidths vary by an order of magnitude or more. We
implemented Pseudofed in the NS [12] network simulator,
which has been used in performance studies of TCP [7] and
multicast protocols [13].

4.1. Experimental Setup

We employ two basic experimental setups. The first is a
simple two-node, single-hop topology. This simple topol-
ogy allows us to examine the basics of the rate adjustment
algorithm operating in a one-to-one communication mode
with and without TCP. The second setup consists of a num-
ber of more complex topologies in which the performance
of the protocol under multicast conditions is studied.

Topologies In the two-node topology, the multicast and
TCP sources were located at one node, and the receiver and
sink at the other.

For the second set of experiments, we used Georgia In-
stitute of Technology’s Internetwork Topology Models (GT-
ITM) [17, 3] tool to generate random topologies of up to
100 nodes1.

In simulations, bandwidths of 5 and 100 Mbits/sec were
assigned to stub-to-stub, and transit-to-transit links respec-
tively. Stub-to-transit links used lower bandwidths (56
Kbits/sec, 128 Kbits/sec, and 1 Mbits/sec).

1These are reasonably large networks given the resources available.

For our experiments, we used 5 different randomly gen-
erated transit-stub topologies. The average propagation
delay on stub-to-stub, transit-to-stub, and transit-to-transit
links were 5, 20, and 100 milliseconds, respectively.

Multicast Group Description Multicast group members
are placed at the stub nodes. In each of the five topolo-
gies used, the multicast source and receivers were randomly
chosen among stub nodes. The multicast group density es-
tablishes the percentage of stub nodes that are members of
the multicast group. In our simulations, we used multicast
group densities of 25 and 75%.

Cross Traffic In the two-node topology, traffic consists of
a TCP connection running concurrently with Pseudofed for
300 seconds.

In the transit-stub topology setup, the cross traffic pat-
terns we use consist of a mix of uniformly distributed short
and long TCP sessions. A short TCP session is created ev-
ery 0.1 second on average and sends 10 Kbytes of data.
Long TCP sessions send 100 Kilobytes of data and are cre-
ated at a rate of 1 every 10 seconds. The total number of
TCP sessions for our 180 second experiments were 1800
10K sessions, and 18 100K sessions. The TCP sources and
sinks were randomly chosen from among the stub nodes in
our topology.

Our goal in using cross traffic as background noise is
twofold: (1) perturb the multicast flow to evaluate how
quickly it reacts to congestion and how well it adapts to
changes in bandwidth availability; (2) evaluate how well
link bandwidth is utilized and shared with competing traf-
fic: we want to ensure that the multicast flow does not starve
competing traffic and vice-versa. We should also point out
that in our simulations we do not model lossy links. Packet
losses are solely due to congestion.

We used TCP-based cross traffic as a yardstick for our
congestion control algorithm. TCP’s congestion control
mechanisms have been well tuned for an environment like
the Internet, and showing that our algorithm behaves well

67

63 59

60

61

62
64

65

66
68

69

70
71

72

73

7475

76

5
4

76

17

20

23

25

24
26

16

18

22

21
19

30

33

32

31 3428

27

35

29

80

77
78

79

81

82 83

84

85

86

88

87

89
90

91

95

94
9392

969798

99 3

1 2

0

47

42

43

45

48

46

44

53

49

51

50

52

54
55

56

57

58

8

12

9

11

10

13

14

15

38

39

36

41

37

40

Figure 2. Transit-Stub Topology



when competing for bandwidth with a reasonably conser-
vative algorithm is promising.

4.2. Simulation Results

Two-Node Topology These experiments evaluate Pseud-
ofed’s congestion control operating in a one-to-one commu-
nication mode competing for bandwidth against TCP flows.
These runs illustrate the ability of the congestion control al-
gorithm to find and maintain the maximum allowable rate
and share bandwidth with competing TCP traffic.

Figure 3(a) shows the source transmission rate over time
when a single Pseudofed flow has no competition for band-
width. The congestion control algorithm quickly finds the
bottleneck bandwidth and then oscillates around it for the
duration of the flow. The statistics in Table 1 confirm that
Pseudofed’s average throughput of 15,396 bytes/sec (ap-
proximately 123 Kbits/sec) closely approximates the link’s
physical bandwidth. Also note that no packets are dropped.

When competing with TCP (a single Pseudofed flow and
single TCP session were started at the same time and run
concurrently for the duration of the experiment), we observe
from Table 1 that Pseudofed’s average throughput drops to
approximately 48 Kbits/sec, or less than1=3 of its through-
put without TCP. This shows that the congestion control al-
gorithm relinquishes bandwidth in the presence of compet-
ing traffic. In fact, it lets TCP grab around2=3 of the link
bandwidth, on average.

Figure 3(b) shows that half-way through the experiment,
Pseudofed’s rate stabilizes around 57.6 Kbits/sec. Note that
both Pseudofed and TCP drop ratios are still low.

Flow Throughput Drop Ratio

Pseudofed Only Pseudofed 15,396 0.0
TCP Only TCP 15,943 0.016
Combined Pseudofed 6,083 0.076

TCP 10,467 0.039

Table 1. Average throughput (bytes/sec) and
byte drop ratio over two-node topology.

Transit-Stub Topologies We use the transit-stub topol-
ogy scenarios to evaluate Pseudofed’s operation in multi-
cast mode. As before, we tested the congestion control al-
gorithm with and without TCP cross traffic. While the ex-
periments without cross traffic evaluate how well Pseudofed
performs on uncongested links, the experiments with TCP
cross traffic study Pseudofed’s behavior in the presence of
congestion. The goal of these simulations is to ensure that
the congestion control algorithm detects congestion buildup

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

B
y
te

s
/S

e
c
o
n
d

Time

-Rate

Flow:0

(a) Transmission rate of a single Pseudofed flow.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300
B

y
te

s
/S

e
c
o

n
d

Time

-Rate

Flow:0

(b) Transmission rate of Pseudofed flow competing with one TCP
flow.

Figure 3. Two-node topology over a 128 Kb/s
link.

and backs off the transmission rate. Yet, the congestion-
controlled multicast flow should still grab a reasonable por-
tion of the bandwidth.

Single Multicast Flow The first row in Table 2 shows the
average throughput and byte drop ratio of Pseudofed with
no competing TCP traffic. These averages were computed
over five runs using randomly-generated transit-stub topolo-
gies with 128 Kbits/sec bottleneck links and 75% multicast
group density. Pseudofed’s average throughput of approx-
imately 126 Kbits/sec is very close to the optimum band-
width yet causing very few packet drops. The graphs in
Figure 4 show the results of a sample run. They confirm
that the congestion control algorithm is able to find the bot-
tleneck link bandwidth (in this case, it oscillates around 128
Kbits/sec) reasonably quickly. Although the bottleneck link
utilization is kept reasonably high, multicast packet drops
are quite low (16 packet drops out of 1629 packets sent, or
a total of 132 multicast data drops out of 141,298 packet



0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180

B
y
te

s
/S

e
c
o
n
d

Time

-Rate

Flow:0

(a) Transmission rate.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180

Q
u

e
u

e
-L

e
n

g
th

Time

-Measured-Queueing

Queue

(b) Measured Queueing (in packets).

Figure 4. Single Pseudofed flow over transit-
stub topology.

hops). From Figures 4(a) and (b), we observe that there
is a close relationship between the measured queueing and
the variations in Pseudofed’s transmission rate: every in-
crease/decrease in measured queueing is quickly followed
by a decrease/increase in the rate.

We observe the same trend for 25% multicast group den-
sities, as well as different bottleneck link bandwidths.

Next, we evaluate the behavior of Pseudofed’s conges-
tion control algorithm when competing with TCP cross traf-
fic. From the summaries in Table 2, we observe that both
Pseudofed and TCP acquire a fair share of the bandwidth.
Yet, the average drop ratios for both TCP and Pseudofed are
kept reasonably low. The reported TCP throughput is com-
puted as the average throughput over all TCP connections.
Pseudofed’s transmission rate slow-starts and achieves ap-
proximately 7.2 Kbytes/sec 30 seconds into the run. The
congestion control algorithm then switches to congestion
avoidance mode (due to the receipt of a CI) and the rate
drops sharply to around 3.7 Kbits/sec, and then gradually

Flow Throughput Drop Ratio

Pseudofed Pseudofed 12,567 0.009
TCP Only TCP 15,197 0.036

Pseudofed/TCP Pseudofed 8,175 0.013
TCP 8,477 0.155

Table 2. Average throughput (bytes/sec) and
byte drop ratio over 5 randomly-generated
transit-stub topologies.

increases.

Spatially Uncorrelated Loss To test Pseudofed’s re-
sponse to spatially uncorrelated loss, we use a transit-stub
topology. Instead of having the access to the transit net-
work be the bottleneck, we make the intra-stub links the
bottleneck links. This simulates a network in which losses
occur primarily at the edges. We set the transit links to have
bandwidths of 100Mbits/s, and the stub links to 128 Kbits/s.

Packet drops occur on 85% of the links in the 75-member
multicast tree. Despite this large, uncorrelated loss ratio, we
still obtain acceptable performance (see Figure 4.2). Table 3
shows that the average throughput of the non-backbone
TCP traffic is not seriously impacted by the presence of the
multicast flow.

TCP Throughput TCP Drop Ratio

Pseudofed/TCP 232,130 0.16
TCP Only 258,092 0.12

Table 3. Spatially uncorrelated losses: av-
erage TCP throughput (bytes/sec) and byte
drop ratio.

5. MBone Experiments

Experiments on the MBone allow us to evaluate Pseud-
ofed in yet another challenging environment that is diffi-
cult to simulate. The MBone is a virtual multicast network
with multicast capable subnets connected via unicast tun-
nels. Traffic on the MBone consists primarily of fixed-rate
video and audio sessions with no congestion control. Con-
sequently, parts of the MBone suffer severe congestion with
no relief via congestion control. This environment could be
considered extremely artificial and subject to radical change
in the future.

Although in our simulations we have studied Pseudofed
under several network environments, MBone experiments



ISI Loss Ratio 0%
UCSB Loss Ratio 0%

GaTech Loss Ratio 20%
Average Sending Rate 19,181 bytes/sec

Table 4. Statistics for MBone experiment.

give us a reality check. Several experiments were carried
out on the MBone as proof of concept.

For these preliminary experiments, we used a small, ge-
ographically diverse group of sites located at: USC, ISI,
UCSB, and Georgia Tech. While this small group does
not begin to exercise scalability issues, it does help exer-
cise some of the uncorrelated loss problems that occur in
the MBone.

The experiment consisted of sending a single large file of
5,590,335 bytes from USC to the other three sites. Table 4
summarizes some statistics for the experiment.

As can be seen from the graph in Figure 5(b), the GRTT
estimates fluctuate considerably. A closer examination of
the queueing estimates (Figure 5(c)) shows how closely
these estimates are related to the GRTT estimates. At the
discontinuities in the GRTT estimates, the queueing es-
timates change. When the GRTT drops drastically, the
queueing estimates change enough to cause the rate to de-
crease. A more stable method of GRTT would probably
give a more stable rate, since the rate adjustment is depen-
dent upon stable queueing estimates.

6. Related Work

Reliable multicast has been a topic of intense research
and development efforts over the past couple of years. Both
the Internet Engineering and Internet Research Task Forces
(IETF and IRTF) have been heavily involved in coordi-

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350 400 450 500

B
y
te

s
/S

e
c
o
n
d

Time

-Rate

Flow:0

(a) Transmission rate.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400 450

B
y
te

s
/S

e
c
o
n
d

Time

-Transmission-Rate

Source

(b) Transmission Rate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450

S
e
c
o
n
d

Time

-Measured-RTT

RTT
GRTT

(c) Round Trip Time.

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450

Q
u
e
u
e
-L

e
n
g
th

Time

-Measured-Queueing

Queue

(d) Measured Queueing (in packets).

Figure 5. MBone experiment



nating multicast transport protocol research, development,
standardization, deployment, and technology transfer activ-
ities. Surveys of the state-of-the-art of reliable multicast
include [10, 14, 9, 5, 16, 15].

Recent work on multicast congestion control has been
carried out in the context of the IRTF Reliable Multicast
Working Group (RM-WG). References to multicast control
research efforts as well as other initiatives under the RM-
WG can be found in [2].

7. Future Work

We have shown that Pseudofed can co-exist with a sin-
gle TCP connection in a simple network, and that it can
operate in more complex, heavily congested networks. Fur-
ther simulations need to be conducted to investigate further
to find whether there are scenarios in which unfairness oc-
curs with either TCP or Pseudofed. While, overall network
performance characteristics are encouraging, more attention
needs to be given to the performance of individual flows and
how they compete on congested links.

To date we have only performed simple Mbone experi-
ments as a sanity check on our algorithm. More extensive
testing needs to be performed to either validate our simula-
tions or identify weaknesses.

The rate adjustment algorithm used in Pseudofed needs
to be more sensitive to link bandwidth. While it can be
tuned to perform well for a particular target bandwidth, it
needs to be able to automatically tune itself for different
bandwidths. This tuning will probably be a function of the
GRTT, packet size, and current source transmission rate.

8. Conclusions

Our simulations studies of Pseudofed’s performance un-
der a simple two nodes topology and heavily congested
transit stub topologies show that it can use available band-
width, yet still coexist with TCP traffic. Pseudofed can also
perform well even with uncorrelated loss in the multicast
tree.

Simulation results show that Pseudofed’s congestion
control algorithm responds to congestion in a timely fash-
ion, yet makes use of available bandwidth. Simulations also
show that Pseudofed can co-exist with TCP: it backs off in
the presence of TCP traffic but still keeps a reasonable share
of the bandwidth. Even in networks with high uncorrelated
loss, Pseudofed manages to obtain a reasonable share of
the network bandwidth while allowing general TCP traffic
a reasonable portion of the bandwidth and without incur-
ring high packet losses. As proof of concept, we conducted
experiments with Pseudofed on the MBone. These prelim-
inary MBone experiments demonstrate Pseudofed’s ability
to operate in a diverse, uncontrolled network environment.

We anticipate that its versatility and ability to operate un-
der adverse network conditions will allow Pseudofed’s con-
gestion control algorithm to be employed in a wide range of
multicast environments.

References

[1] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance.1994
ACM SIGCOMM Conference, pages 24–35, May 1994.

[2] M. by Mark Handley. The reliable multicast research group.
Available from http://www.east.isi.edu/rm, 1997.

[3] K. Calvert
and E. Zegura. Georgia tech internetwork topology models.
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html.

[4] W. Dang and T. Nielsen. The imm protocol. On-line source
code from ftp://ftp.hawaii.edu/paccom/imm-3.3, May 1994.

[5] B. DeCleene, S. Bhattacharaya, T. Friedman, M. Keaton,
J. Kurose, D. Rubenstein, and D. Towsley. Reliable mul-
ticast framework (rmf): A white paper. March 1997.

[6] D. DeLucia and K. Obraczka. Multicast feedback suppres-
sion using representatives.Proc. of the IEEE Infocom’97,
Kobe, Japan, April 1997.

[7] K. Fall and S. Floyd. Simulation-based comparisons of
tahoe, reno, and sack tcp.ACM Computer Communications
Review, July 1996.

[8] V. Jacobson. Congestion avoidance and control.ACM SIG-
COMM 88, pages 273–288, 1988.

[9] J. Knoght. Multicast transport protocols.
http://hill.lut.ac.uk/DS-Archive/MTP.html, 1997.

[10] B. Levine and J. Garcia-Luna-Acceves. A comparison of
known classes of reliable multicast protocols.Proceed-
ings of the International Conference on Network Protocols
(ICNP)’96, October 1996.

[11] J. Macker and W. Dang. The multicast dissemination proto-
col (mdp) framework. Internet Draft, Internet Engineering
Task Force, draft-macker-mdp-framework-00.txt, Novem-
ber 1996.

[12] S. McCanne. ns - LBNL network simulator. Available from
http://www-nrg.ee.lbl.gov/ns/.

[13] S. McCanne and V. Jacobson. Receiver-driven layered mul-
ticast.1996 ACM Sigcomm Conference, pages 117–130, Au-
gust 1996.

[14] T. Montgomery. Reliable multicast links.
http://research.ivv.nasa.gov/RMP/links.html, October 1997.

[15] K. Obraczka. Multicast transport mechanisms: A survey and
taxonomy.IEEE Communications Magazine, January 1998.

[16] Z. Whang, J. Crowcroft, C. Diot, and A. Ghosh. Framework
for reliable multicast application design.Proceedings of the
HIPPARCH’97, 1997.

[17] E. Zegura, K. Calvert, and S. Bhallacharjee. How to model
an internetwork.Proc. of the IEEE Infocom’96, San Fran-
cisco, CA, April 1997.


