A Timing-based Schema for

Stabilizing Information Exchange

Anish Arora *

Abstract

The paradigm of information exchange provides o ba-
sis for nodes in a network to stay uptodate with the recent
information in the network. In this paradigm, nodes coop-
erate with each other to share their current information.
We present a stmple and uniform schema for building in-
formation exchange protocols that are stabilizing, in the
following strong sense. Starting from arbitrary state, the
protocols reach within bounded real-time a state wherefrom
all nodes remain uptodate with the recent information in
the network.

The ability to stabilize in bounded time is achieved by
using timing-based actions. The timing constraints on
these actions can be systematically adapted to suit a vari-
ety of network loads, delay requirements, and scheduling re-
strictions and to tolerate out-of-phase and drift-prone node
clocks. Our schema also tolerates any number of topolog-
ical changes in the network. Moreover, it accommodates
information thaot is time-varying as well as it does infor-
mation that is fived. It is thus well-suited to dynamic high
speed networks.

Keywords: stabilization, timing-based protocols, fault-
tolerance, adaptivity, high speed networks, formal meth-
ods, verification

1 Introduction

It is often necessary for nodes in a computer network to
exchange information with each other. Not only do such
“information exchange” protocols enable nodes to collect,
disseminate, or update information, they also provide a
basis to solve diverse problems in distributed computation,
communication, and control.

If networks were stable and all nodes could execute si-
multaneously, solutions to information exchange problems
would be designed readily: in a sequence of simultane-
ous steps, network nodes would propagate the information
they noted in the last step and make note of the informa-
tion received in current step.

Most networks are, however, dynamic. As a result, solu-
tions to information exchange problems become more com-
plex. Consider, for example, a network where nodes and
channels may added or be removed at any time. When a
node is removed, information that could be communicated
solely via that node has to be removed from the system in
bounded time. Likewise, when a channel is removed, infor-
mation that could be communicated solely via that channel
has to be removed from the system in bounded time. In
addition, when a node or channel is added, the duals of
the abovementioned considerations have to be dealt with.

*Dept. Comp. Sc., The Ohio State University, Columbus,
OH 43210, {anish, poduska}@cis.ohio-state.edu. Supported in
part by NSF Grant CCR-93-08640 and OSU Grant 221506

0-8186-7216-1/95 $04.00 © 1995 IEEE

324

David M. Poduska

Moreover, network nodes can not execute simultane-
ously. As a result, even when nodes execute at exactly the
same speed, an out-of-phase node may execute incorrectly,
for example, by removing some information just before re-
newed confirmation of that information arrives. The situa-
tion is further complicated by the variable communication
delay of channels and by the drift in the speeds of nodes
(both from the ideal clock and from each other).

Finally, networks today operate at high speeds and aim
to provide small end-to-end delay to applications. As a
result, the use of protocols that explicitly acknowledge re-
ceipt of information is undesirable; and, loss of coordina-
tion is better addressed within the scope of protocols than
as a separate task. Modern networks are also increasingly
subject to wide variation in network load, quality of ser-
vice requirements, and restrictions on node schedulers. As
a result, protocols that can be adapted to suit a variety of
network situations are desirable.

Contribution of the paper. In this paper, we focus
our attention on the entire class of information exchange
problems, including ones in which the information varies
over time. We systematically develop a simple and uni-
form protocol schema for designing information exchange
protocols that are stabilizing, in the following strong sense.
Starting from arbitrary state, the protocols reach within
bounded real-time a state wherefrom all nodes remain up-
todate with the recent information in the network.

The ability to stabilize in bounded time is achieved
by using timing-based actions. The timing constraints on
these actions can be systematically adapted to suit a va-
riety of network loads, delay requirements and scheduling
restrictions, and to tolerate out-of-phase and drift-prone
node clocks. Our protocol schema is also able to toler-
ate any number of topological changes in the network, by
ensuring that when the topology stabilizes the protocols
stabilize to a state wherefrom all up nodes remain upto-
date with the recent information in the up portion of the
network.

‘We also describe in this paper a simple and uniform
verification schema to demonstrate the correctness of the
resulting protocols.

Previous Work. Gouda and Multari [1] present
an indepth study of stabilization in networks protocols,
although the protocols they consider are not explicitly
timing-based. In fact, we have found only a few stabilizing
protocols in the literature that are explicitly timing-based.
Varghese [2] discusses how propagation of information with
feedback may be achieved in a stabilizing fashion using
timing-based actions on a tree network. He also refers
to timing-based stabilizing solutions for maintaining span-
ning trees (due to Perlman), data links and virtual circuits
(due to Spinelli).

We have found even fewer timing-based protocols in the
literature that are formally verified. As regards verification
methods, our approach builds on previous work [3-11]. We
restrict our proofs of timing properties to the use of two
bounded temporal concepts, namely bounded response and
bounded invariance. These two concepts appear to be suf-
ficient for reasoning about the timing properties of fault-
tolerant protocols [3]. We use timing properties essentially
to exhibit bounds on the convergence time and to deduce
untimed properties.

A discussion of information exchange protocols appears
in Segall [12]. His protocols are not stabilizing. They do,
however, tolerate topological changes, although unlike our
protocols, they use messages of unbounded size to achieve
fault-tolerance.

Overview of the paper. To motivate our schema,
we begin by presenting a stabilizing timing-based solu-
tion to the adjacency problem, a problem that is basic
to distributed computer networks. In this problem, net-
work nodes need to know the nodes that are “adjacent” to
them. A node is adjacent to another node iff both nodes
are “up” and there is an up channel between them.

We then show that our solution to the adjacency prob-
lem can be elegantly generalized to solve a more general
information exchange problem, namely the connectivity
problem. In this problem, network nodes need to know
the nodes that are “connected” to them. A node is “con-
nected” to another node iff there is a path from the for-
mer to the latter that consists solely of up nodes and up
channels. Thus, whereas the adjacency problem only re-
quires information about nodes to be communicated to
their neighbors, the connectivity problem requires that in-
formation about nodes be communicated to all nodes in
the system that are reachable from them.

We next show that the structure of the connectivity
problem can be generalized to solve all information ex-
change problems. The factors that may be considered in
this generalization include:

e Type: is the information untyped, Boolean, Ids, Inte-
ger, Real, Space Coordinate, Time Coordinate, or a
composite type,

e Domain: is the information exchange within a neigh-
borhood, between a subset of nodes, or in the entire
network,

e Fized/Variable: how does the information vary over
time,

e Frequency: how often does the information need to be
exchanged,

e Consistency: how do nodes determine whether the
information received in the exchange is current,

o Authentication: how do nodes determine whether the
information received in the exchange is authentic,

e Application: how do nodes use the information re-
ceived in the exchange.

The resulting program schema can be instantiated to
solve diverse information exchange problems. With un-
typed information, for example, the problems of Adjacency
and Connectivity are solved. With Boolean-valued infor-
mation, the problems of Consensus and Commitment are

325

solved. With Id-valued information, Leader Election and
Spanning Tree Construction problems are solved. With
Integer or Real-valued information, Maxima Finding and
Routing problems are solved. With Space Coordinate in-
formation, Mobility and Geometry problems can be solved.
And, with Time Coordinate information, Distributed Sim-
ulation and Clock Synchronization problems can be solved.
We refer the reader to [13] for the specific instantiations.

Finally, we discuss how our schema can be adapted to
suit a variety of network loads, delay requirements, and
scheduling restrictions.

Organization of the paper. In Section 2, we dis-
cuss notation for timing-based protocols and for temporal
modalities used to verify timing-based protocols. In Sec-
tion 3, we present a stabilizing solution to the adjacency
problem and verify its correctness. In Section 4, we gen-
eralize the solution and verification given in Section 3 to
solve the connectivity problem. In Section 5, we generalize
the solution and verification given in Section 4 to a schema
for solving information exchange problems. In Section 6,
we discuss the adaptivity of our protocol schema. Finally,
conclusions follow in Section 7.

2 Timing-Based Protocols

2.1 Syntax and Semantics

A timing-based protocol consists of a set of variables,
a set of actions, and a set of timing constraints. Each
variable has a predefined nonempty domain. Each action
has the form

(.v)
guard — statement
where the guard is a boolean expression over protocol vari-
ables, L and U are constant timebounds such that 0 < L
and L <U, and the statement is a terminating update of
protocol variables. Each timing constraint is an arithmetic
relation between the timebounds of the protocol actions.

Let p be a timing-based protocol. A state of p is defined
by a value for each variable of p, chosen from the domain
of the variable. An action of p is enabled at a state iff its
guard is true at that state. A state predicate of p is defined
by a boolean expression over the variables of p.

Based on the semantics of maximal parallelism, a com-
putation of p schedules execution of the statement of each
action as soon as the guard of that action is enabled. The
time elapsed from the guard of an action being enabled to
the statement of the action being executed is within the
interval [L,U) of the action. Each statement is executed
in an atomic step. Note that the guard of the action may
no longer be enabled when the statement is executed.

More formally, a computation of p is a fair sequence
of steps: in each step, the statement of some action j is
executed. The statement is chosen such that the following
two conditions hold: (i) since the last step in which j was
executed, j has been enabled at least once, and (ii) the
time between the earliest such state where j was enabled
and the current state is in the range [L, U). By fairness of
the computation, we mean that if an action is enabled at a
state, the statement of the action is subsequently executed
in the sequence.

A state predicate S is closed in p, informally, iff in ev-
ery computation of p, once S holds it continues to hold.

Recall that in untimed protocols the verification of closure
is relatively easy: Since guard evaluation and statement
execution occur in the same instant, closure is verified by
showing for each action of p that at any state where the ac-
tion is enabled and S holds, executing the statement of the
action yields a state where S holds. By way of contrast,
in timed protocols the verification of closure is more com-
plicated: Since there is a delay between guard evaluation
and statement execution, closure is verified by showing for
each action of p that at any state in a computation where
S holds, either executing the action yields a state where S
holds or the action cannot have been enabled at any past
time within the upper timebound of the action. We meet
this obligation by exhibiting for each action a predicate
P such that in any state where S A P holds, executing
the statement preserves S; and in any state where S A —P
holds, the statement was not enabled at any past time
within the upper timebound of the action.

More formally, S is closed in p iff for each action

L
g ﬂ st, (3P :
(S A —~P) = (—g has held for at least past U time) :
{SAP}st{S})

A timing-based protocol pis stabilizing for a closed state
predicate S iff upon starting from an arbitrary state ev-
ery computation of p reaches within bounded time a state
where S holds.

2.2 Verification

An established method for verifying the correctness of
untimed protocols is to exhibit a state invariant. Intu-
itively, the state invariant of a protocol is a state predicate
that characterizes the “intended” states of protocol execu-
tion [4, 5, 6]. Thus, every computation of an untimed pro-
tocol that starts at a state where its state invariant holds is
an intended computation, one that meets the (safety and
progress properties of the) problem specification that the
protocol satisfies.

This method of state invariants remains valid for
timing-based protocols. However, the task of exhibit-
ing the state invariant of timing-based protocols requires
knowledge of timing dependencies in the protocol. These
timing dependencies can be incorporated within the state
invariant, as in [7, 8], or within a separate assertion con-
taining timing properties [9]. We prefer to separate timing
assertions from state assertions: first, we exhibit a timing
invariant, named 7Z, and then using 77 we exhibit a state
invariant, named SZ.

The timing invariant 7Z of a protocol asserts that cer-
tain timing assertions are true in every computation of the
protocol, regardless of the states that the computations
start in. 7Z is used only to verify that SZ is closed; i.e,
TZ is used to show that statements that may falsify SZ
are restricted to execute only in those states where they
preserve SZ. Once ST is validated, safety and progress
progress properties of the protocol are verified just as they
are in untimed programs.

The correctness of TZ relies on the time bounds of the
actions and the timing constraints placed on those bounds.
Given the time bounds and the timing constraints, 77 is
proven nonoperationally by examining each protocol ac-

326

tion.

In our notation, 7Z consists of two types of timing
assertions, one involving “bounded invariance” — some
property has remained stable for a period of time — and
the other involving “bounded response” — from a given
state something is guaranteed to occur within a bounded
amount of time.

We use two temporal modalities to permit assertions of
these two types of timing assertions. To specify a bounded
invariance property such as, “if a siren sounds an error
condition has persisted for 10 seconds”, we write

siren = (<O : 10secs : error).

To specify a bounded response property such as “if an
error is detected then an alarm will sound within 10 sec-
onds”, we write

error = (> : 10secs : alarm).

Note that as given the intervals over which the two op-
erators are defined are not duals; the > operator provides
an open, future interval (e.g., in less than 10 seconds) while
the <O operator provides a closed, past interval (e.g., for at
least 10 seconds). We choose these two operators because
they are well understood and suffice for our purposes. Note
also that the > operator is equivalent to a bounded ver-
sion of the F operator and the <O operator corresponds
to a bounded version of the S operator in temporal logic
[10, 11].

2.3 Network Assumptions

A computer network consists of N nodes and some num-
ber of communication channels that each connect a unique
pair of nodes. Channels are bidirectional: the channel di-
rected from an arbitrary node j to an arbitrary node k
is denoted (j, k) and the channel directed from node k to
node j is denoted (k,j). At each instant, a predicate up.j
is true iff node j is up, and a predicate up.(j, k) is true
iff (j,k) is up. Actions of node j may communicate with
node k iff up.j and up.(j, k) hold. The communication time
along any directed channel is guaranteed to be less than
R, where R > 0.

For convenience, we use a standard action to represent
the communication on each directed channel. If channel
(k,) is non-empty, denoted ch.k.j # () and the recipient
node j is up, then within R time units of information being
sent, the information is received into buffer q.j.k at node j
and the channel is cleared. Formally, the “channel” action
for (k, j) is:

[0,R)
chkj# () ANupj — q.jk,chk.j:=last.(ch.(k,3)),{)

Note that some information may be “lost” if, for in-
stance, information is received twice during an iteration
cycle.

Up nodes and channels may suffer fail-stop failure at
any time. Down nodes and channels may repair with an
arbitrary state at any time. When a channel repairs, both
of its directed channels repair, although not necessarily at
the same time.

3 A Stabilizing Timing-Based Adja-
cency Protocol

Specification: It is required to design for each node j
a set of actions that maintain for each channel (j, k) a
variable adj.j.k, for k is adjacent to j, such that adj.j.k is
true iff j can prove that up.k and up.(j, k) hold.

Design: A standard approach to the adjacency problem is
for each node to periodically send “keep-alive” messages to
its neighbors to inform them that it is still up; if a neighbor
does not receive a keep-alive message from the node within
some number of periods, the neighbor can assume the node
has failed.

We design each node to first send a keep-alive message
to each neighbor and then determine the age of the last
keep-alive message received from each neighbor. When
the age of the last keep-alive message equals a threshold
K, that neighbor is marked as being nonadjacent. This
is achieved by an action that executes as follows. First,
node j appends some information to each outgoing chan-
nel ch.j.k to inform each neighbor k that j is up. Ex-
actly what information is appended is of no consequence,
so we append arbitrary information (denoted “?”). Sec-
ond, each incoming q.j.k is polled to determine whether a
keep-alive message was received in the last iteration (note
that since the actual information that is received is of no
consequence, we refer to ¢.j.k as a boolean instead of us-
ing q.j.k # () and ¢.j.k = ()). Finally, the local adjacency
relation is updated in one of three ways:

1. If node j received a keep-alive message from node k
in the previous round, we indicate node j has current
information that node k is adjacent to node j by re-
setting variable age.j.k to 0 and truthifying adj.j.k.
The domain of age.j.k is {0... K}.

2. If node j did not receive a keep-alive message from
node k in the previous round, we “age” j’s local
knowledge of k’s adjacency; that is, we say node j’s
information regarding node k is less current than it
was the previous round.

3. If node j has not received any keep-alive messages
from node k in any of the previous K rounds, we as-
sume that either node k or channel ch.k.j has failed.
That information asserted by node k, namely the fact
that k is adjacent, is subsequently retracted by falsi-
fying adj.j.k.

Formally, this “node” action for node j is:

_[sT)

up.j —>

(Il & - up.(k, 5) :
ch.jk:=chjk - ?

i if
q.j.k — adjjk,age.jk, qj.k = true,0, false

—q.jk Nage.jk < K — agejk:=agejk+1

~q.j.k ANage.jk =K — adj.j.k:= false
fi)
The time bounds on the node action capture both the
bound on the rate of the fastest processor to the slowest

327

processor and the varying speeds of nodes: A fast node
may only require S time to complete an iteration while
a slower node may require up to 7' time to complete an
iteration. The speed of a node may change over time,
completing one iteration in as little as S time and another
iteration in up to T time.

Our design ensures that if each node completes its iter-
ation within the interval [S,T), then provided the timing
constraint R + T < KS is satisfied, every computation of
the adjacency protocol upon starting from an arbitrary
state converges to a state where the adjacency relation is
correct and remains correct.

3.1 Verification

Intuitively, the correctness of each node’s information
relies on a node receiving a keep-alive message from each
up neighbor before age reaches K. The concern is that a
fast node will falsely mark a slower neighbor down before
the neighbor has a chance to send the node a message.
By examining the protocol, we know that (i) a node j can
only mark a neighbor & down after age.j.k = K and (ii)
an up node broadcasts its status at most T time after its
previous broadcast, and the information is received at most
R time after being sent. It hence follows from the timing
constraint R + T < KS that no node is marked down
falsely. Again, this constraint is part of the correctness
criteria — in order for an implementation to be correct,
the implementation must satisfy the timing constraint.

Timing Invariant:

T (Vj,k :up.j :
(up.k Aup.(k,j)) = (> :KS:q.j.k)
—q.j.k = (<Q:age.jk*S:-q.jk))

A

The first conjunct of 7Z asserts that if node %k is up,
all of its neighbors j will receive k’s information within
K S time. The second conjunct asserts the correctness of
age.j.k: age.j.k is only reset upon the receipt of infor-
mation; if age.j.k = n, either no information has been
received in the previous n rounds or some information
has been received but not processed. In other words, if
age.j.k = n and no information has been received, that
has not been processed (as indicated by g.j.k holding),
then it must be true that no message has been received in
the last n rounds which lasted at least nS time.

State Invariant:

ST = (Vik:upj:
(adj.jk = up‘k/\u.p.(k,j)) .
A ((-upk vV -updk,j)) = —g.j.k)
A (—adj.jk = age.j.k = K))
Stabilization: No matter how the network topology or

the protocol state is perturbed, continued execution of our
protocol will eventually yield a legal state. The worst case
stabilization time of the protocol is (K + 1)T + R.

Due to lack of space, we refer the reader to [13] for all
proofs of timing invariants, state invariants, and stabiliza-
tion.

3.2 Extensions

Tolerating Clock Drift: Thus far we have assumed
that all node clocks measure real-time ideally, and hence
each node can accurately schedule its iteratively executed

action in the interval [S,T). In this subsection, we show
how to extend our solution to tolerate node clocks that do
not measure real-time ideally, as long as the cumulative
error between any two node clocks is at most A, where A
is a known constant.

‘We observe that it is possible for the timing constraint
R+T < KS to hold for ideal clocks, but be violated when
clocks drift apart by at most A. In particular, a node
with a slow clock may require up to 7 + A to complete
one iteration. If R+ T + A > K S, successive keep-alive
messages from the node with the slow clock may not arrive
at the node’s neighbors before the neighbors mark the node
down.

To solve this problem we add a constant delay, ¢, to the
lower time bound of the node action. The value of ¢ is
chosen so that

R+T+A-KS <
K

C

Since it is known that R+7T < K §, the value of ¢ yields
the more restrictive timing constraint,

R+T<K(S+¢)

This new constraint allows local clocks to drift from
each other by at most A while preserving the proofs of
correctness (with S replaced by S + ¢).

Accounting for clock drift, the node action for node j
becomes:

[S+e,T)
up.j ——>
(1 k: (K,) -
ch.jk:=chjk -7
;o if
q.3.k — adj.j.k, agejk,q.j.k = true 0, false

—q.7k ANage.j.k < K — agejk :=agejk+1

[

~q.7.k Nage.j.k = K — adj.j.k = false

fi)

Interrupt Version: The adjacency protocol given previ-
ously is based on “polling”: node j iteratively polls each of
the q.7.k to determine on which channels new information
had been received. Based on this polling, the adjacency
relation is maintained.

For certain network architectures, it may be appropri-
ate to design a stabilizing, interrupt driven version of the
adjacency protocol: An interrupt version of the adjacency
protocol is readily designed that differs from the polling
version in that it modifies the adjacency relation as soon
as it receives new information.

4 A Stabilizing Timing-Based Connec-
tivity Protocol

Specification: It is required to design for each node j
a set of actions that maintain for each node k a variable
conn.j.k, for k is connected to j, such that conn.j.k is true
iff j can prove there exists a path from node j to node k
consisting only of up channels and up nodes.

328

Design: While the type of information exchanged by the
nodes in connectivity is the same as in adjacency, in con-
nectivity the information must be propagated to all nodes
in the network. We propagate the information by “piggy-
backing” local state on top of the keep-alive messages.

In order for information to be retracted in every node,
nodes must have some method of propagating the retrac-
tion. We add some information to the local state of each
node, namely its alleged distance from every other up node,
to facilitate this retraction. A node may retract informa-
tion by “retracting” its distance value (by assigning an
impossible distance, such as N). A vector, dist.j, contains
the alleged distances from node j to every other node in
the network.

Remark: We will occasionally subscript variables to
emphasize the fact that they are local variables (or lo-
cal copies of variables). The subscript denotes which node
owns variable; thus, conn;.k denotes node j’s local copy of
node k’s connectivity vector. (End of Remark)

The node action for node j is:
[s.1)
up.j —>

Ik : (4, k) - ch.j.k :==ch.jk - dist;.j)
; disty.g.g:=0; (Jli:¢%#j:distj.j.0:= N)
i (k=
if
(3e: (3, 7) : distj. ik < N) —
age.j.k,conn.j.k,dist;.j.k := 0, true,dist; .i.k + 1

(Vi: (i,7) : distj.i.k = N)
age.j.k :==agejk+1

A agejk< K —

(Vi: (i, 7) : dist;jik=N) A agejk=K —
conn.j.k := false
fi)

These actions are similar to the actions in the adjacency
protocol, the main difference being the additional proof, a
legal dist value, needed to verify the correctness of the
received information.

A problem could arise if false dist values were allowed
to persist in the network, as a false dist value could pre-
vent nodes from retracting information; therefore, we must
show that no incorrect dist values persist in the network.

In each round, every node resets its dist values to N.
Furthermore, dist values less than V that are received from
neighbors are always incremented. Thus, whereas an up
node j will periodically rebroadcast a dist;.j.7 = 0 to pre-
vent others from marking it down, a node j that is down
will not broadcast any dist;.j.j value, so all other nodes, k,
will continually increase their distg.k.j until all distg.k.j
become N, thereby enabling others to mark it down.

4.1 Verification

Correctness of the connectivity protocol is proven in the
same manner as the correctness for the adjacency protocol:
we exhibit a 77 which is used to prove 87 is closed. We

also assume the same timing constraint as in the adjacency
protocol, namely R+ T < KS.

Timing Invariant:
TL Ve, 5,k : up.j :
(conn.ki A upk A up(k,j)) =
(>: KS: conn.j.i)
A —conn.ji = (<O:age.j.k* S : ~conn.ji))

Again, similar to the adjacency protocol, the first con-
junct TZ states that each node will propagate its conn
values (via its dist values) in a timely manner, and the
second conjunct states that age.j.k correctly indicates the
minimum number of iterations since node j received veri-
fication of #’s reachability.

State Invariant:
ST Vi, k:up.j:
(conn.j.k reach.j.k)
A ((3i: (4,7) : distj.i.k < N) = reach.j.k)
A (reach.jk = (age.jk < K V
(35 : (4,4) : distj.i.k < N)))
A (—conn.j.k = age.jk = K))

The first conjunct ensures the first condition of the spec-
ification is met: conn.j.k is true iff node & is reachable from
node j in the physical network (denoted reach.j.k). The
next two conjuncts ensure that information is correctly
propagated: first, if node j has received dist;.i.k < N
from a neighbor i, then node k must be reachable from
node j, and second, if k is reachable from 7, then j will
receive proof of the fact before age.j.k = K. Finally, the
last conjunct simply states that conn.j.k can not be falsi-
fied before age.j.k = K.

Stabilization: The total stabilization time for the con-
nectivity protocol is (K +d)T+dR. We note the maximum
stabilization time is roughly equivalent to the maximum
end-to-end transmission time of the network which makes
the protocol good for use in high speed networks or when
low delay is crucial.

Extensions: The connectivity protocol can be extended
to accommodate clock drift and interrupts in the same
manner the adjacency protocol was extended to accommo-
date them.

5 A Stabilizing Timing-Based Pro-
tocol Schema for Information Ex-
change

Specification: Given a global relation, rel.j.k, between
the nodes of the network, it is required to design for each
node j a set of actions that maintain for each node k a
boolean variable assert.j.k, for node j asserts rel.j.k holds,
such that assert.j.k is true iff 5 can prove that rel.j.k
holds.

Design: Using the connectivity problem as a basis, we
present a protocol schema for solving all information ex-
change problems. The connectivity problem requires the
propagation of information to all reachable nodes. By
specifying what information is exchanged and how the in-
formation is used, we can use the same schema to solve
many different problems. For example, the Leader Elec-
tion problem can be solved by having each node “elect”
the connected node with the highest id as the leader (e.g.,
leader.j = max{k|conn.j.k}); or, if each node notes which

329

neighbor first provided the proof of conn.j.(leader.j), the
Leader Election solution can be extended to Spanning Tree
Construction; or, finally, if instead of ids, the nodes ex-
change arbitrary numbers, the Leader Election protocol
becomes a protocol for solving the Maxima Finding prob-
lem.

In this section we present a stabilizing, timing-based
protocol schema for Information Exchange. In places
where problem-specific information is required we use
placeholders — the information that is exchanged and how
the information is used is varied by varying the instantia-
tions of the placeholders.

5.1 Schema Placeholders

The placeholders include the data structure st.j, the
local state of j; ¢.7.k, a temporary buffer for received in-
formation; and pst.j.k, a copy of the last information node
j received from node k: pst.j.k is node j’s local copy of
st.k. Because ¢.7.k is only used as a buffer, and it has the
same structure as st.j, we will not explicitly specify ¢.j.k.

In addition to the data structures, we specify a boolean
expression defined over pst.j.j and pst.j.i, proof.j.i.k, that
is true only if j has current information from some node
1 that proves rel.j.k holds — proof.j.i.k denotes the states
in which assert.j.k can be truthified. For example, in
the connectivity protocol if node j receives a dist;j.i.k <
N then node j assert that node k is reachable; thus,
dist;.i.k < N serves as a proof that node k is reachable
from node j.

Finally, we also specify two statements. The first state-
ment, reset, performs a reset on st.;. When nodes main-
tain information asserted by nodes other than their neigh-
bors, they must rely on a third party to provide valid in-
formation. If unchecked, false information may persist in
the network, so nodes require all information received from
a third party be verified. Since the third party cannot get
verification for the false information, the third party will
eventually be forced to retract the information. In order to
force a verification check each time information is received
from a third party, a node resets some pieces of st.j each
iteration to some known illegal value. If the information
is verified, the node will send legal values to its neighbors;
if not, the node will send the known illegal value to its
neighbors so the neighbors will know the information is
false.

The second statement, update, updates st.j with infor-
mation from pst.j.k. The update statement is often used
to maintain the auxiliary information used to verify the
information received from third parties.

5.2 Schema Overview

The structure of the schema’s node action is similar to
the structure of the node action in the connectivity proto-
col, but the schema requires that additional operations be
performed.

As before, node j first sends its local state to all its
neighbors. Node j then checks for information received
since the last iteration (denoted by a non-empty g¢.7.k). If
node j has received information from node k, it makes a
copy of the temporary buffer, ¢.7.k, where the information
was stored, and clears q.j.k to indicate there is no new

information from node k. Since node j may modify its
local information, and therefore erase a proof, during a
round, node j makes a stable copy of its local information:
this copy is the information known to node j at the end of
the previous iteration (as it has not been modified in this
iteration). Finally, the last overhead statement resets st.j.

The final statement of the node action, the parallel con-
ditional statement, is similar to the final statement of the
connectivity problem, but the specifics of the connectivity
protocol have been replaced with placeholders. As in the
connectivity protocol, the relation being maintained by the
schema is updated in one of three ways:

1. If node j received proof in the previous round from
some neighbor ¢ that rel.j.k holds, we note node j
has received a current proof of rel.j.k by truthifying
assert.j.k and resetting age.j.k. Furthermore, st.j.kis
updated to reflect any additional information received
from node % concerning node k.

2. If node j did not receive any proof in the previous
round that rel.7.k holds, we “age” j’s local copy of
k’s information; that is, we say k’s information at
node j is less current than it was the previous round.

3. If node j has not received any proof in any of the
previous K rounds that rel.j.k holds, either node k
has failed or there is no path of up nodes and chan-
nels from node k to node j; therefore, node j cannot
receive information from node k, so the information
is retracted.

The node action for node j is:
[S,T)
up.j —

(% : wp.{3,k) : ch.jk :=chjk - stj)
; pst.ggi=stg; (li:i#j:pstjiqji=q.ji)
; reset sty
i (11k
if
(3¢ :: proof.jik) — age.j.k,assert.jk:=0,true

[

(Vi :: ~proof.j.i.k) — agejk:=agejk+1
A age.jk < K

(Vi :: —proof.j.i.k) — assert.jk := false
A agejk =K
fi)

; update st.j.k

5.3 Verification

Just as the protocol schema permits us to quickly de-
velop information exchange protocols, we present a proof
schema based on timing and state invariants to quickly
prove the correctness of the resulting protocols. We as-
sume the same timing constraint as in the connectivity
protocol, namely R+ T < K S. While the timing invariant
will remain unchanged for all information exchange proto-
cols, the state invariant is protocol specific.

330

Timing Invariant:
TI (Vj, k:up.j:
(upk AN uplk,j7)) = (>: KS:q.jk)
A =(3% :: proof.jik) =
(<O : age.j.k * S : =(3i :: proof.j.i.k)))

State Invariant:
ST (V5,k:up.j:
(assert.j.k rel.j.k)
A ((3i :: proof.jik) = rel.j.k)
A (rel.j.k = (age.j k< K V
(3¢ :: proof.ji.k)))
A (~assert.j.k = age.j.k = K))

The first conjunct of SZ states that the protocol vari-
able assert.j.k is true iff the desired relation, rel.j.k, does
indeed hold between nodes j and k; that is, the proto-
col meets its specification by correctly maintaining the de-
sired relation. The next two conjuncts ensure that no false
proofs exist and that if the relation does hold, it can be
proven: if a proof exists, the relation holds; and if the re-
lation holds, a proof is received within K rounds. The last
conjunct of TZ is the correctness condition for age.j.k as
it relates to assert.j.k — —assert.j.k can hold only if no
proof has been received for K consecutive rounds.

Stabilization: Like the connectivity protocol, the proto-
col schema stabilizes in at most (K + d)T + dR time. We
note the best case end-to-end transmission time is 0 and
the worst case end-to-end transmission time is d(T + R).

Extensions: Again, protocol extensions analogous to the
clock drift and interrupt processing extensions given for
the adjacency protocol may be applied to this protocol
schema.

6 Adaptivity of the Schema

We show in this section that our protocol schema is
readily adapted to suit a variety of network loads, delay
requirements, and scheduler restrictions, by exploiting the
degrees of freedom allowed by its timing constraints.

More precisely, we observe that the constraints T+R <
KS and S < T admit the following degrees of freedom:

1. T can be increased as longas T+ R < KS :
By increasing T, the interval {S,T) is lengthened
which makes the scheduling of the node action eas-
ier in heavily loaded nodes.

2. S can be decreased as long as T+ R < KS :
Decreasing S also lengthens the interval [S, T') making
scheduling easier.

3. T can be reduced as long as S < T :
Since the worst case end-to-end delay is d(T + R),
where d is the diameter, as T decreases the end-to-
end delay decreases. Similarly, the best case delay is
0, yielding an end-to-end variance of d(T' + R); thus,
reducing T' also decreases the end-to-end variance in
delay. Related to the end-to-end delay is the stabi-
lization time, (K + d)T + dR; again, as T decreases,

the stabilization time decreases.

4. S can be increased as long as S < T :
Recall that tolerance to clock drift was enabled by

adding a constant to S when implementing the node
action; thus increases in S provide greater tolerance
to clock drift.

5. K can be decreased as long as T+ R < K S :
Again, the stabilization time is (K + d)T + dR, so
decreasing K decreases the stabilization time.

6. K can be increased freely :
Increasing K provides greater tolerance to transient
failures, such as message loss or corruption, since
short-lived absence of correct information will not suf-
fice for nodes to retract information.

We further observe that our decision to use the same R
for all channels and the same S, T, and K for all nodes is
over-specific. In fact, more generally, we could have let S.j
and T.j, S.7 < T.j, be unique lower and upper timebounds
on node action of j, K.j be the maximum age used in the
node action of j, and R.(j, k) be the upper bound on the
communication delay on the channel from j to k and shown
that the schema is correct provided the following timing
constraint is satisfied (Vj, k : R.(k,j)+T.k < K.j*S.j). It
now follows that different degrees of freedom may be ap-
plied (and to differing degrees) at the various nodes, de-
pending upon the number of neighboring nodes, the load
on each node, the congestion on neighboring channels, etc.

We finally observe that changes in the values of S.j,
T.j, and K.j can be made online, as long as the timing
constraints are preserved in the presence of changes.

7 Conclusions

We have systematically developed both a uniform pro-
tocol schema for stabilizing information exchange in com-
puter networks and a uniform verification schema to verify
the correctness of the resulting protocols.

Our schema is based on well-established concepts.
The protocol notation uses a modified form of Dijkstra’s
guarded commands [14]; the use of upper and lower time
bounds on statement execution is based on earlier work
[9, 11, 15]; protocols are verified by exhibiting a state in-
variant and a timing invariant; and, timing invariants are
proven using a small number of well understood temporal
concepts [11].

Our schema accommodates the exchange of both fixed
and time-varying information (see [13] for examples).
While protocols for both types of information are devel-
oped in the same manner, their implementation is poten-
tially different. For instance, in the latter case, the use of
a smaller upperbound 7" may be crucial for ensuring small
message sizes and low transmission delay.

The schema is designed using timing-based actions.
The use of timing-based actions obviated the need for ex-
plicit acknowledgements of receipt of information, which
facilitates the development of continuous-media data ex-
change protocols in high speed networks.

With respect to implementation, our schema is tolerant
to two common timing problems: the absence of (hard)
guarantees that actions can be scheduled with exact pe-
riodicity, and imprecise local clocks. The timebounds for
its actions can be adapted in various ways, even dynami-
cally, to improve performance, facilitate schedulability, ac-
commodate varying network traffic, etc. The overhead it

331

imposes on the size of the information messages is at most
a single vector of N distance values.

Finally, at the moment we have only ensured the pro-
tocols are stabilizing but not that they are masking: dur-
ing the convergence phase, nodes may have inconsistent
information. While short periods of inconsistency may
be acceptable for some applications, such as video trans-
mission, for some applications such as navigation systems,
even short periods of inconsistency can be fatal. We are
currently extending our schema so that it masking, in ad-
dition to being stabilizing.

Acknowledgements. We thank the referees for their con-
structive comments.

References

[1] M. G. Gouda and N. Multari. Stabilizing communication
protocols. IEEE Transaction on Computers, 40(4):448-
458, 1991.

G. Varghese. Self-Stabilization by Local Checking and Cor-
rection. PhD thesis, Massachusetts Institute of Technology,
1992.

A. Arora and D. M. Poduska. A logical foundation of real-
time programs. Unpublished Manuscript, 1994.

(2]

(3]
[4] E. A. Ashcroft. Proving assertions about parallel programs.
Journal of Computer and System Sciences, 10:110-135,
1975.

E. W. Dijkstra. A Discipline of Programming, chapter 14.
Prentice-Hall, Englewood Cliffs, N. J., 1976.

D. Gries. The Science of Programming. Springer-Verlag,
New York, 1981.

F. Jahanian and A. Mok. Safety analysis of timing proper-
ties in real-time systems. IEEE Transaction on Software
Engineering, 12(9):890-904, 1986.

R. Alur and T. A. Henzinger. Real-time logics: Complexity
and expressiveness. Technical Report STAN-CS-90-1307,
Stanford University, 1990.

N. A. Lynch and H. Attiya. Using mappings to prove tim-
ing properties. In Proceedings of the 9th ACM Symposium
on Principles of Distributed Computing (PODC), pages
265-280, Quebec City, PQ CDN, 1990. ACM Press, New
York, NY, USA.

R. Koymans, J. Vytopil, and W. P. de Roever. Real-time
programming and asynchronous message passing. In 2nd
ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, 1983.

T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal
proof methodologies for real-time systems. In Proceedings
of the 18th Annual Symposium on Principles of Program-
ming Languages, pages 353-366, Orlando, Florida, Jan-
uary 1991. ACM Press.

A. Segall. Distributed network protocols. JEEE Transac-
tions on Information Theory, 1T-29:23-35, 1983.

A. Arora and D. M. Poduska. A timing-based schema for
stabilizing information exchange. Technical Report OSU-
CISRC-5/95-TR26, The Ohio State University, 1995.

E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the
ACM, 18(8):453-457, 1975.

F. Modugno, M. Merritt, and M. Tuttle. Time constrained
automata. In CONCUR ’91 Proceedings of Workshop on
Theories of Concurrency, Amsterdam, August 1991.

&l

(10]

(11]

[12]

(13]

(14]

(15]

