Incentive-Aware Routing in DTNs

Upendra Shevade
Han Hee Song
Lili Qiu
Yin Zhang
The University of Texas at Austin

IEEE ICNP 2008
October 22, 2008
DTNs

- Disruption tolerant networks
 - No contemporaneous path may exist
 - Opportunistic nature

- Applications
 - Princeton ZebraNet
 - MIT CarTel
 - Cambridge Haggle
 - UWaterloo KioskNet
 - UMass DieselNet, MSR VanLAN
 - NASA Interplanetary Internet
Selfish behavior in DTN routing

- Rational strategy: only consider node's own performance criteria
 - Not to relay traffic for anyone else
 - Disseminate excessive replicas

Performance metric: # packets arrive at destination before delivery deadline

Data delivery in direct contact only

Selfish behavior can cause significant performance degradation
Challenges

Common solutions don’t work in DTNs
- Strong detection and punishment of misbehaviors
 - Cannot assume full-time monitoring of nodes
- Credit-based protocol
 - Difficult to provide centralized credit bank

Challenges to DTN routing
- Lack of contemporaneous path
- High variation in network conditions
- Difficulty to predict mobility patterns
- Long feedback delay

Need incentive-aware routing that works in DTNs
Incentive-aware protocol overview

• Incentivize DTN protocol
 – Tit-for-tat (TFT) as basic incentive mech.
 – Bootstrap incentive via generosity
 – Prevent protracted vendetta via contrition

Incentive mechanism in our solution: TFT + generosity + contrition
TFT as incentive mechanism

• Tit-for-tat (TFT)
 – Simple
 – Solid foundation in game theory
 – Proven good performance in other domains
 – TFT reciprocate good or bad behavior only between neighbors

\[T_{A,B} : \text{total traffic node } A \text{ relays for } B \]

\[T_{A,B} = T_{B,A} \quad \forall \text{node } A, B \]
TFT as incentive mechanism

- **Tit-for-tat (TFT)**
 - TFT score: # of packets a node can send/relay to the corresponding neighbor
TFT as incentive mechanism

• Tit-for-tat (TFT)
 – Simplicity
 – Solid foundation in game theory
 – Proven good performance in real systems
 – TFT reciprocate good or bad behavior only between neighbors

\[T_{A,B} : \text{total traffic node } A \text{ relays for } B \]

\[T_{A,B} = T_{B,A} \quad \forall \text{node } A, B \]
TFT with generosity

• Problem: bootstrapping
• Bootstrap incentive via generosity
 – Allows nodes to send up to ε number of packets more than it has received from others previously
• Mitigates asymmetric traffic demands
 – Absorbs traffic imbalance up to ε
• Bound exploitation by selfish nodes to ε
Protracted vendetta

Demand: 10 packet/interval
Generosity ε: 1 packet/interval

Combined throughput suffers for long time
TFT with contrition

- **Contrition**
 - Refrain from reacting to a valid retaliation to its own mistake
 - Cannot be exploited

Contortion solely cannot bootstrap
Protocol overview

For every interval:

Signaling
- Link state dissemination
- Feedback collection

Routing
- Path performance estimation
- Path selection

Incentive-aware forwarding
- Enforce TFT constraint
Signaling

• **Link state dissemination**
 - OSPF-like flooding of neighboring link state (link delay, loss rate, capacity) to every node
 - Purpose: to guide routing

• **Feedback: flooding of end-to-end ACK**
 - Reliable and fast way to give feedback
 - Proof of successful relay through the path
 - Update TFT constraint in relay nodes
 - Integrity guaranteed by digital signatures
Route computation

At the beginning of every interval, source nodes

1. Enumerate all possible paths to destination within 3 hops (#paths $O(n^2)$) for each flow

2. Predict lower-bound of delivery ratio for each path

3. Sort paths in the order of decreasing delivery ratio

4. Update routing strategy by greedily moving traffic from the worst path to the best
Path performance estimation

- **Metric:** delivery ratio under given deadline
 - Even in DTN, deadline needed for protocol
- **Challenge:** hard to predict delay distribution
 - High mobility, dynamicity of network condition
- **Solution:** distribution-free envelope
 1. Get mean and variance of delay from link states
 2. Use Chebyshev’s inequality to construct a conservative envelope of delivery ratio

\[
Pr(X \leq D) \geq 1 - \left(\frac{\sigma}{D - \mu} \right)^2 \quad X: \text{total wait time} \\
D: \text{deadline}
\]
Enforcing TFT constraints

• At each relay node
 - Drop traffic if neighbor violates tit-for-tat
 \[T_{A,B} : \text{total traffic node } A \text{ relays for } B \]
 \[T_{A,B} \leq T_{B,A} + \varepsilon \]
 - Applies contrition upon perturbation

• Little overhead of TFT states
 - \(O(\#\text{neighbors}) \)

• Delivery increases until link capacity is full or TFT constraints are violated
Evaluation methodology

• Routing schemes
 – Cooperative DTN without TFT
 • Best achievable performance
 – Cooperative DTN with TFT
 • Pays the cost of incentive mechanism via LP
 – Selfish DTN with TFT
 • Pays the cost of selfishness + incentive mechanism
 – Selfish DTN without TFT
 • Data delivery in direct contact only
Evaluation methodology

• Mobility traces
 – Synthetic traces
 • 20 nodes, 114 links, 1 sec ON, $N(10, 0.5)$ sec OFF
 – Haggle
 • 41 iMotes, trace collected during INFOCOM conference
 – ZebraNet
 • 20 zebra movements, 6 x 6Km field, radio range 500m

• More results in the paper
Performance loss due to incentive mechanism: 20% synth, 10.5% Haggle

Performance loss due to the selfishness: 25% synth, 6% Haggle

Performance gain using Incentive-aware routing protocol: 150% synth, 20% Haggle
Related work

• **DTN routing**
 - Opportunistic routing
 - Epidemic routing, Jain '04
 - Erasure coding based routing
 - Wang '05
 - Utility-based replication
 - RAPID Balasubramanian '07

• **Incentive mechanisms**
 - Strong identification of misbehaving nodes and isolate them
 - Mahajan '05, Marti '00
 - Credit-based protocols awarding incentives to cooperative nodes
 - Buttayan '00, Zhong '03
 - **Game theoretic foundation on TFT** e.g.
 - DARWIN Jaramillo '07, Srinivasan '03, Milan '06
 - **Other domains**
 - BitTorrent , BAR Gossip Li '06, Flightpath Li '08
Conclusion

• **Contributions**
 – Study the impact of selfish behavior in DTNs
 – First work on incentive-aware DTN routing
 – Demonstrate the effectiveness of our routing scheme using real DTN traces

• **Future work**
 – Incentive-aware control-plane in DTNs
 – Analyze routing algorithm in more diverse DTNs
Thank you!
Cooperative DTN

- **Maximize total delivery ratio for all flows**

 \[X_{f,i} \] : traffic allocation of flow \(f \) on path \(i \)

 \[P_{f,i} \] : lower bound of delivery ratio when \(f \) is routed through \(i \)

 \[C_{ap_i} \] : smallest capacity of all links on path \(i \)

\[
\text{Input: Flows, Demand}(f), P_{f,i}, C_{ap_i} \\
\text{Output: } X_{f,i} \\
\text{max: } \sum_{f \in \text{Flows}} \sum_{i} X_{f,i} P_{f,i} \\
\text{Subject to:} \\
[C1] \quad \sum_{f \in \text{Flows}} X_{f,i} \leq C_{ap_i} \quad \forall i \\
[C2] \quad \sum_{i} X_{f,i} \leq \text{RepFactor} \times \text{Demand}(f) \quad \forall f
\]
Difference from TFT in P2P

<table>
<thead>
<tr>
<th></th>
<th>TFT in file sharing systems</th>
<th>TFT-based routing in DTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peering relationship</td>
<td>File shared bilaterally between two nodes only</td>
<td>Multiple relay nodes apply TFT to their peers</td>
</tr>
<tr>
<td>Network condition</td>
<td>Persistent, less variable connection over relatively long interval</td>
<td>bootstrapping and exploitation problem due to high uncertainty in network</td>
</tr>
<tr>
<td>Feedback mechanism</td>
<td>Instant TFT feedback from neighboring peer</td>
<td>Large feedback delay requires end-to-end acknowledgement scheme</td>
</tr>
</tbody>
</table>
Effects of time intervals

- Deadlines: 70 sec for synthetic, 7000 for Haggle

While performance of different cooperation schemes varies to traces, the rank remains the same.
Performance loss due to incentive mechanism: 12% ZebraNet

Performance loss due to the selfishness: 21% ZebraNet

Performance gain using Incentive-aware routing protocol: 18% ZebraNet
Temporal variation in mobility

- Estimate next interval's link characteristics using EWMA

EWMA prediction scheme performs within 10% of the oracle for Haggle
Impact of spatial variation in traffic demands

- Routing schemes under more realistic traffic demand scenarios

<table>
<thead>
<tr>
<th># flows from src: equal or Zipfian distr</th>
</tr>
</thead>
</table>

| Destination selection: equal prob. or Gravity model |

![Graph showing the impact of routing schemes under more realistic traffic demand scenarios.](image-url)
Impact of temporal variation in traffic demands

- Tests the responsiveness of different routing schemes to demand changes

Delivery rate adapts quickly with the change
Motivation

- Selfish behavior in Disruption Tolerant Networks (DTNs) leads to serious performance degradation.
ZebraNet per time

Packets within Deadline

Coop. without TFT
Coop. with TFT
Self. with TFT
Self. without TFT

Time (in seconds)
Incentive-aware protocol overview

- Incentivize DTN protocol
- **DTN Routing protocol**
 - Link state dissemination
 - Every node
 - Path performance computation
 - Source node
 - Route computation
 - TFT constraint enforcement
 - Relay nodes
 - Feedback dissemination
 - Destination

OSPF like flooding of link state