Topology Dynamics and Routing for Predictable Mobile Networks

Daniel Fischer1,2, David Basin3, Thomas Engel1

ICNP 08 Conference, Orlando, USA

1University of Luxembourg, SECAN-Lab
2European Space Agency / ESOC
3ETH Zurich

22th October 2008
Talk Outline

- Problem Definition & Motivation
- Topology Model
- Predictable Link State Routing
- Simulation Results
- Conclusions & Future Work
Problem Definition & Motivation

- Work is motivated by practical problems in space communication systems.
- Spacecraft communication is mostly based on point-to-point links between ground stations and spacecrafts.
 - Limited scalability
 - High cost
 - Limited constellation control
- ESA and other space agencies are investigating the use of heterogeneous spacecraft networks.
 - Inter-spacecraft communication links
 - Introduction of network layer functionalities
- Existing spacecraft network concepts:
 - Iridium (Flying)
 - Teledesic (Not implemented)
Predictable Mobile Networks

• Spacecrafts follow fixed flight paths that can be pre-computed
 – Their movement is therefore predictable

➢ In spacecraft networks, the connectivity graph is also predictable

• But space is a hazardous environment!
 – Spacecrafts can temporarily or totally fail to provide communication services (safe mode, spacecraft loss)
 – These outage events are unpredictable

• Contribution
 – Formalization of a suitable topology model using the snapshot approach
 – Design of a Routing Protocol for Predictable Mobile Networks (PLSR)
 – Concept validation via simulation and proof of correctness
Talk Outline

Problem Definition & Motivation

Topology Model

Predictable Link State Routing

Simulation Results

Conclusions & Future Work
The Snapshot Model

• Predictable Topology Model
 – Dynamic topology graph broken down into a series of static topology graphs
 – Static connectivity graph describes the topology during a time period in which no predictable changes occur
 – Time points at which predictable changes occur are called transition points

• Snapshots
 – Snapshots associate transition points with static connectivity graphs
 ➢ The topology evolution can be described by a sequence of snapshots and a transition function
Snapshot Distribution

• To benefit from predictability, nodes require information on future snapshots

• Generation and Distribution of snapshot sequences
 – Repeating movement patterns are rare
 – Limited memory resources in nodes

• Solution is to utilize ground stations
 – Extensive computational resources allow computation of snapshot sequences
 – Ground Station nodes compute and distribute snapshot sequences
 • These sequences represent connectivity “reality” for each point in time

• Snapshot Distribution
 – Only distribute changes between snapshots and use multicast
 – Scalability: Node distance is low in terms of hops in spacecraft networks
 • Scalability in generic predictable mobile networks deserves further research
 – Propagation Delays: On-Time distribution required
Unpredictable Changes

- Unpredictable changes can occur at any time
 - Not covered by the transition function
 - Discovered using link-sensing
- Unpredictable Changes transform “reality” as represented by a given snapshot
 - Current snapshot connectivity graph is modified
 - Unpredictable changes then interact with predictable changes at transition points
 - Ground stations receive information on unpredictable changes
 - They can perform regular re-alignment of the predicted “reality”
Talk Outline

Problem Definition & Motivation
Topology Model
Predictable Link State Routing
Simulation Results
Conclusions & Future Work
Routing Protocol Foundations

• Candidate Basic Algorithm Analysis
 – Mobile ad-hoc routing protocols found to be inadequate
 • No notion of predictability
 • Often limited topology knowledge
 • BUT: Quick adaptation of changes
 – Static routing protocols also inadequate
 • Not designed to cope with changes that result from rapid movement
 • BUT: Building and exploiting extensive knowledge of the topology
 – Predictable Mobile Networks share properties from both worlds

• Link-State routing is best suited as a foundation for the new routing protocol

• The Predictable Link State Routing (PLSR) protocol has been developed for Predictable Mobile Networks
Desired Protocol Properties 1/2

- Two kinds of consistency are considered by PLSR
- Predictable Change Consistency
 - Following a snapshot transition point, all nodes share a consistent view of the network before the next transition point is reached
 - The inconsistency period is negligible and represents the time that the nodes require to compute their new link-state database
- In general, period is small enough to suspend packet forwarding
 - Packet loss due to routing failures is thereby avoided
Desired Protocol Properties 2/2

• Unpredictable Change Consistency
 – Following an unpredictable change that occurs at a time point t, at a later time point t', all nodes have updated their link-state databases with the effect of the unpredictable change
 – The time period between t and t' represents the time that the link-state advertisements need to reach all network nodes

• Unpredictable change consistency is reached for all unpredictable changes at some point
Protocol Sketch

• PLSR takes actions at the following events:
 – Predictable Changes
 • Nodes locally update their link-state database
 • Existing unpredictable changes are preserved
 – Unpredictable Changes
 • Occurring unpredictable changes are handled as in basic-link state routing
 • Storage in local databases to record unpredictable changes at snapshot transitions
 • An unpredictable change is removed from this database if
 – a new, snapshot sequence is received that already includes the change
 – The topology changes such that the unpredictable change is no longer applicable
 – Interaction
 • At each transition point, predictable changes are applied prior to stored unpredictable changes
Talk Outline

Problem Definition & Motivation
Topology Model
Predictable Link State Routing
Simulation Results
Conclusions & Future Work
Protocol Simulation

• We compare the performance of PLSR to that of OLSR

• Simulation Setup
 – Ns-2 simulator using the standard wireless communication model
 – General mobile networking setting, independent of any specific spacecraft network scenario
 • Randomly generated, connected topologies for each simulation run
 • PLSR has knowledge of the topology via snapshot updates from a GS node
 – Vast majority of changes is predictable, but unpredictable changes may occur with a probability of 0.1
 – Number of nodes: 5-20 (typical spacecraft network size)

• Measurement Criteria:
 – Routing Overhead
 – Traffic Throughout
 • One traffic stream between two random nodes (UDP-CBR traffic)
 – Convergence time has not been considered
Routing Overhead Simulation

- PLSR causes a lot less routing overhead
 - No routing messages are produced following predictable changes
- PLSR overhead results from
 - Snapshot Distribution (small)
 - Periodic Link-Sensing
- Practical Consequences
 - Much higher bandwidth efficiency with PLSR
 - Especially valid in spacecraft networks
Traffic Throughput Simulation

- PLSR provides almost constant maximum throughput
 - Small variances due to unpredictable changes
- The more nodes, the more efficient is PLSR with respect to OLSR
 - Building stable routes gets more difficult for OLSR with a growing number of nodes
 - PLSR does not suffer from this and only has to correct few unpredictable changes
- Practical Consequences
 - May help to reduce the existing transport layer protocol problem for spacecraft networks
 - In long propagation delay environments, OLSR performance will be even worse
 - PLSR is well suitable for spacecraft networks
Talk Outline

Problem Definition & Motivation
Topology Model
Predictable Link State Routing
Simulation Results

Conclusions & Current Work
Conclusion and Current Work

• We have developed PLSR for heterogeneous, predictable mobile networks
 – Protocol is correct under realistic assumptions for spacecraft networks
 – Simulations show superiority of the protocol over the OLSR protocol
 – Usage of PLSR in spacecraft networks brings direct cost savings and can slim down transport layer protocols
 – Other layers (e.g. DTN bundle layer or physical layer) may also benefit from distributed snapshot information

• Current Work
 – Simulation of the PLSR protocol in realistic spacecraft network scenarios that are planned by ESA using real flight-dynamics data
 • LEO/GEO spacecraft hybrid network
 • Mars rover scenario
 – Relaxation of assumptions and the impact on PLSR correctness and behavior
 • E.g. does PLSR correctness still hold if clock sync. is not present?
 – Investigate scalability of snapshot sequence information distribution
Thank You for Your Attention

Any Questions?

Topology Dynamics and Routing in Predictable Mobile Networks

Daniel Fischer1,2, David Basin3, Thomas Engel1

1University of Luxembourg/ SECAN-Lab
2European Space Agency/ ESOC
3ETH Zurich

http://wiki.uni.lu/secan-lab/Daniel+Fischer.html