Competitive Analysis of Buffer Policies with SLA Commitments

Boaz Patt-Shamir, Tel Aviv University
Gabriel Scalosub, University of Toronto
Yuval Shavitt, Tel Aviv University
Motivation

• Service Level Agreements (SLA)
 – ATM, DiffServ, MPLS, Metro Ethernet
 – Rate meters
 – Admissible traffic: Token Bucket envelope
 – Additional traffic

• “Show me the money!”
 – SLA violation – costly!
 – Forwarding “out of contract” traffic: More Money!

• Issues:
 – Buffer provisioning, admission control, scheduling
Model

- Single FIFO Queue:
 - Outgoing Rate r_Q
 - Buffer size B_Q
- Adversarial Traffic:
 - Committed (green):
 - Rate $r \leq r_Q$
 - Burst size $B \leq B_Q$
 - Excess (yellow):
 - Arbitrary
- Also allows best-effort / aggregate

At most $r(I + B)$ green packets in any interval I
Model (cont)

• Main constraint (feasibility):
 – All committed traffic must be forwarded

• Discrete time
 – Delivery substep
 • At most r_Q delivered
 – Arrival substep
 • Packets arrive
 • Some yellow packets may be dropped
 • Packets accommodated in the buffer
Metric and Methodology

• Goal:
 Maximize the number of excess packets delivered

• Competitive Analysis:
 Algorithm A is c-competitive if for every input sequence σ
 $$A(\sigma) \geq c \cdot \text{OPT}(\sigma)$$

• Resource augmentation:
 – Buffer size: OPT uses B whereas A uses $(1 + \epsilon)B$
 – Rate: OPT uses r whereas A uses $s \geq r$
Our Results

• Lower bounds:
 – Buffer resource augmentation is essential
 – Using $\varepsilon \in [0, 1]$ times more buffer:
 cannot be better than ε-competitive

• Online algorithm ON
 – $\min \left\{ \frac{\varepsilon}{1+\varepsilon - \frac{B - R}{B}}, 1 \right\}$-competitive

• Simulation study:
 – ON is close to optimal
 – Specifically, better than common policies
Previous Work

- Protective buffer management
 - Protective ~ feasibility
 - Push-out
 - Same link speed
 - No analytic guarantees

- Multi-valued packets
 - Const. competitive for finite values

- Packet color marking
 - Exploiting TCP characteristics (AQM)

[Cidon et al. ‘94]

[Kesselman et al. ‘04] [Englert&Westerman ‘06]

[Chait et al. ‘05]
If we use the same amount of buffer as OPT we can never afford to forward excess.
Upper Bounds

• Lower bounds \Rightarrow buffer resource augmentation
 – Use $(1 + \varepsilon)B$

• Naïve approach:
 – Maintain two queues
 – Give priority to committed queue

• Simulator SIM
 – Same buffer size and rate as OPT
 – Ignores all yellow packets
 – Bounds buffer occupancy of OPT (by feasibility...)

This is not FIFO
The Concept of Lag

- Lag of a green packet
 \[\text{lag}^A_t(p) = \max \{ d^A_t(p) - d^\text{SIM}_t(p), 0 \} \]

- \(\varepsilon \)-lag property
 - No green packet in the buffer has lag greater than \(\varepsilon B \)

- Lag of an algorithm
 \[\phi(t) = \max_{p \in \text{Buff}_A(t)} \text{lag}^A_t(p) \]
Algorithm

Algorithm ON

upon the arrival of a new packet:
1) If yellow: accept if there’s room
2) If green:
 • Drop as few yellow packets from the tail such that the new packet will have lag at most εB
 • Accept packet

• Algorithm satisfies:
 – Feasibility
 – ε-lag property
Analysis in a Nutshell

• Identify “reset” events:

\[\phi(t) = 0 \]

• “Overflow” (yellow packets dropped) occurs:
 – Between reset events
 – At least \(\varepsilon B \) yellow packets are “safe” since previous reset
 – Many green packets accepted by SIM:
 • OPT must deal with them as well!!
 • Has “little” space/rate to deal with too many yellow

• Follow algorithm’s lag-difference

\[\phi(t) - \phi(t - 1) \]
Analysis in a Nutshell (cont)

- Implementation issues:
 - Lag calculation is easy
 - No push-out. Just tail-drop.
Simulation Study

• Bursty SLA-compliant traffic
 – MMPP
 – Color marking (token-bucket)

• Best-effort traffic
 – zero-rate commitment
 – Poisson

• Threshold algorithm
 – Accept yellow packet iff buffer occupancy is below T

• OPT upper bound
 – The naïve 2-queue
Simulation Results

- Single MMPP source
- Yellow packets at bursts “tail”
- Yellow traffic: ~ 30% of total traffic

![Graph showing throughput vs. buffer size increase](image)
Simulation Results

- MMPP + Yellow Poisson
- Yellow packets also during OFF
- Yellow traffic: ~ 40% of total traffic
Simulation Results

- MMPP + Yellow Poisson
- Yellow packets also during OFF
- Yellow traffic: ~ 50% of total traffic

![Graph showing throughput vs. buffer size increase for online vs. optimal policies.](image)
Summary

• Algorithm for managing buffers with committed traffic

• Analytic performance results
 – Globally applicable
 – Both lower and upper bounds
 – Guidelines for buffer provisioning

• Simulation study
 – Aggregate flows (w best-effort)
 – Outperforms common approaches
Future Work

• Gaps:
 – No lower bound for large ε.
 – Lower bound vs. upper bound for small ε.

• Multiple queues

Any guesses?
(Recommendation: read the paper first...)
Thank You!