Experimental Evaluation of MAC Protocols for Fairness and QoS Support in Wireless Networks

Authors: Ajit Warrier (NCSU), Injong Rhee (NCSU), Jae H. Kim (Boeing Phantom Works)

Presenter
Sankararaman Janakiraman (NCSU)
Introduction

• Many wireless MACs suffer from severe unfairness, priority inversion, lack of quality of service, starvation.

• Applications come with diverse fairness policies and requirements.

• System design principles: Decouple mechanisms from policies.
 – MACs implement these mechanisms, and provide controlling knobs to these mechanisms to applications so that they can implement their own fairness policies.
Goals of this Paper

- Evaluate MAC mechanisms under various Fairness “Policies”.
- MAC Priority Resolution Categories
 - Differentiated Backoff based schemes (802.11E)
 - Beacon based schemes (EY-NPMA, SIREN)
 - Scheduling based solution (DWOP)
Comparison of MAC PR schemes under different Fairness “Policies”

- Fairness & QoS Policies
 - Static Priority
 - Earliest Deadline First Scheduling
 - Proportional Fairness
 - Proportional Rate Allocation
MAC Mechanisms

- Differentiated Backoff based PR (802.11E)
 - Backoff period inversely proportional to priority
 - Backoff periods assigned for *absolute prioritization* based on a variant of 802.11E
 - Mixing contention resolution with priority resolutions.
Scheduling based Mechanisms

- Scheduling Based (DWOP)
 - Exchange priority information before packet transmission
 - Piggyback priority information in RTS/CTS
 - Nodes coordinate using overhearing and scheduling
 - Mixing PR with CR.
Beacon-based Approach
MAC Priority Resolution in SIREN

- A node with priority i will send a beacon at i-th beacon slot.
- Beacon may collide, but only those nodes with the highest priority can compete in the data transmission.
Adaptation to Multihop Environment

- Beacon Packets Transmitted with High Power
 - Alleviate hidden terminals
- Time Synchronization
 - Aligns beacons for priority resolution across multiple hops in interference range.
Environment for Evaluation

• MicaZ testbed with 30 nodes
• ZigBee based CC2420 radios
• 250 Kbps link speed
• Clear Channel Assessment
• Provide the common platform for evaluation of different MAC schemes.
Static Priority

- 5 HP flows and 5 LP flows
- DWOP has highest throughput for HP and lowest throughput for LP due to deadlocks
Deadlock in DWOP

- High amount of starvation of LP flows
- Loss of Data Packets leaves stale entries in Priority Database
- Results in deadlock
- Timeout based Heuristic for reducing deadlock
Earliest Deadline First

- Prioritize based on deadline.
- Siren Normal uses normal power.
- Siren Normal shows higher number of flows satisfying deadline though at the expense of throughput
Proportional Fairness
(utility: maximize sum of log x)

- 8 flows run with source rate control, flow scheduling and MAC PR.
- SIREN and DWOP obtain high utility
SIREN has relatively high overhead due to implementation of beacons on CC2420. Despite this overhead, it gives better performance.
Summary and Conclusion

• Decoupling priority resolution (PR) from contention resolution (CR) enables more faithful implementation of fairness policies.
 – IEEE802.11 and DWOP combine CR with PR, making it difficult to implement fairness policies and also has side-effect of deadlock (DWOP).
 – Siren completely decouples them, thus good for individual evolutions.
Thanks!