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Abstract

Receiver-driven TCP protocols delegate key congestion
control functions to receivers. Their goal is to exploit in-
formation available only at receivers in order to improve
latency and throughput in diverse scenarios ranging from
wireless access links to wireline and wireless web brows-
ing. Unfortunately, in contrast to today’s sender-driven pro-
tocols, receiver-driven congestion control introduces an in-
centive for misbehavior. Namely, the primary beneficiary of
a flow (the receiver of data) has both the means and incen-
tive to manipulate the congestion control algorithm in order
to obtain higher throughput or reduced latency. In this pa-
per, we study the deployability of receiver-driven TCP in
environments with untrusted receivers which may tamper
with the congestion control algorithm for their own bene-
fit. Using analytical modeling and extensive simulation ex-
periments, we show that deployment of receiver-driven TCP
must strike a balance between enforcement mechanisms,
which can limit performance, and complete trust of end-
points, which results in vulnerability to cheaters and even
DoS attackers.

1. Introduction

Recent advances in TCP congestion control design have
demonstrated the ability to significantly improve TCP per-
formance in a variety of scenarios, ranging from high-
speed (e.g., [9, 15]) to mobile and wireless networks (e.g.,
[2, 4]). However, each such advance introduces the follow-
ing dilemma: if a user can obtain a significant increase
in throughput via an optimized congestion control algo-
rithm, how can the network or the other end point distin-
guish among (i) users with optimized protocol stacks, (ii)
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“cheater’s” that have modified protocol stacks that maxi-
mize their own throughput without regard to fairness or net-
work stability, and (iii) attackers that seek only to transmit at
a high rate in order to deny service to others. More precisely,
the question becomes how can misbehavior be detected in
the presence of widely variable protocol performance pro-
files? And most importantly, protocol innovations often in-
troduce novel security challenges, which, if not considered
a priori, may have devastating consequences once such in-
novations become deployed.

TCP variants that are widely deployed today are sender-
centric protocols in which the sender performs important
functions such as congestion control and reliability, whereas
the receiver has minimum functionality via transmission of
acknowledgements to the sender. Yet, it is becoming evi-
dent that increasing the functionality of receivers can signif-
icantly improve TCP performance [5, 10, 20, 29, 30, 31]. In-
deed, a key breakthrough in this design philosophy is repre-
sented by fully receiver-centric protocols in which all con-
trol functions are delegated to receivers [12, 14]. The ben-
efits that are being established for this innovative design
include improved TCP throughput and an array of other
performance enhancements: (i) improved loss recovery; (ii)
more robust congestion control; (iii) improved power man-
agement for mobile devices; (iv) a solution to the hand-
off problem in wireless networks; (v) improved behavior of
network-specific congestion control; (vi) easy migration to
a replicated server during handoffs; (vii) improved band-
width aggregation; and (viii) improved web response times.

However, both sender- and receiver-centric protocols im-
plicitly rely on the assumption that both endpoints cooper-
ate in determining the proper rate at which to send data, an
assumption that is increasingly invalid today. With sender-
centric TCP-like congestion control, the sending endpoint
may misbehave by disobeying the appropriate congestion
control algorithms and send data more quickly. Fortunately,
the lack of a strong incentive for selfish Internet users to
do so (uploading vs. downloading) appears to be the main
guard against such misbehavior. Moreover, while it has been
discovered that misbehaving receivers can perform DoS at-
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tacks or steal bandwidth even with sender-centric protocols
[28], it has been shown that it is possible to modify TCP to
entirely eliminate this undesirable behavior [6, 28].

On the other hand, receiver-centric congestion control
presents a perfect match for a misbehaving user: the receiv-
ing endpoint performs all congestion control functions, and
has both the incentive (faster web browsing and file down-
loads) and the opportunity (open source operating systems)
to exploit protocol vulnerabilities. In this paper, we explore
the tradeoffs and tensions between performance and trust
for receiver-centric transport protocols. In particular, given
the above benefits (i)-(viii), and clear vulnerabilities, our
goal is to evaluate whether it is possible for HTTP, file, and
streaming servers in the Internet to deploy receiver centric
transport protocols while striking a balance between per-
formance enhancements and protection against misbehav-
ior. We focus on the class of receiver-driven protocols be-
cause their deployment introduces a set of novel security
challenges that can have devastating effects on the widely-
deployed HTTP, file, and streaming servers in the Inter-
net. Moreover, we show that none of the existing solutions
are able to efficiently protect the servers from such receiver
misbehaviors.

In this paper, we first anticipate a set of possible receiver
misbehaviors, ranging from classical denial-of-service at-
tacks, e.g., receiver request flooding, to more moderate
and consequently harder-to-detect resource-stealing manip-
ulations. We analyze misbehaviors that forge the additive-
increase-multiplicative-decrease (AIMD) or retransmission
timeout (RTO) parameters such that flows steal bandwidth
over longer time-scales. Furthermore, we develop an ana-
lytical model by generalizing [22] to predict the throughput
that a misbehavior will obtain as a function of modified pa-
rameters.

Next, we evaluate and point out the main limitations of
a set of state-of-the-art router- and edge-based mechanisms
designed to detect and thwart denial-of-service attacks and
other flow misbehaviors. We then propose and evaluate a set
of sender-side mechanisms designed to detect and thwart re-
ceiver misbehavior, yet without any help from a potentially
misbehaving receiver. We initially focus on long time-scales
and develop a TFRC-based scheme in which senders (i)
independently estimate RTT and loss rate without any co-
operation from a potentially misbehaving receiver, (ii) dy-
namically compute the TCP-friendly rate, and (iii) detect
out-of-profile behavior. While this end-point approach at
the sender-side is able to accurately detect even slight re-
ceiver misbehaviors and strictly enforce TCP-friendliness,
we show that a fundamental tradeoff arises from the fact
that in the absence of trust between the sender and receiver,
it becomes problematic for the sender to infer whether the
receiver is misbehaving or legitimately trying to optimize
its performance with an enhanced protocol stack.

Finally, we analyze short-time-scale receiver misbehav-
iors, and show that the performance vs. trust tension sig-
nificantly magnifies over shorter time-scales. For example,
we conduct a web experiment and show that a malicious
client that uses excessively long initial window size and
also forges exponential backoff timers, can not only signif-
icantly improve its own response time, but can also dras-
tically degrade the response times of the background traf-
fic. While sender-based enforcement mechanisms (e.g., rate
limiting) are again successful against DoS attacks, we show
that in HTTP scenarios dominated by short-lived flows,
such mechanisms can often limit receiver-driven TCP per-
formance to a level below that achievable by today’s sender-
based TCP.

2. Background

2.1. Delegating Control Functions to Receivers

One of the first transport protocols that exploits increased
receiver functionality is Clark et al.’s NETBLT [5], which
makes error recovery more efficient by placing the data
retransmission timer at the receiver. In later work, an in-
creased set of control functions appear at the receiver, ei-
ther for performance or practical reasons (e.g., to decrease
the computation burden at the sender). For example, Sinha
et al.’s WTCP [29] calculates the sending rate at the re-
ceiver; Floyd et al.’s TFRC [10] maintains the loss history
and computes the TCP-friendly rate at the receiver; Tsaous-
sidis and Zhang’s TCP-Real [31] tracks loss events and de-
termines the data delivery rate at the receiver; Spring et al.
[30] and Mehra et al. [20] add functionality to the receiver
to control the bandwidth shares of incoming TCP flows, i.e.,
by adapting the receiver’s advertised window and delay in
transmitting ack messages, the receiver is able to control the
bandwidth share on the access link according to the client’s
needs.

2.2. Fully Receiver-Driven Transport Protocols

In contrast to the above protocols, all control func-
tions are delegated to receivers in Web Transport Proto-
col (WebTP) [12] and Reception Control Protocol (RCP)
[14]. Hsieh et al. [14] argue that the key advantage of fully
receiver-centric transport protocols is that the receiver con-
trols how much data can be sent, and which data should be
sent by the sender. The benefits that are being established
for this protocol design are listed in the Introduction and
described in detail in [12, 14].
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2.3. RCP Protocol

Here, we provide a brief overview of RCP, variants of
which we consider for the remainder of the paper. 1
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Figure 1. TCP functionalities at the sender
and receiver

All TCP variants provide reliable in-sequence data deliv-
ery to the application, with protocol operations consisting
mainly of four mechanisms: connection management, flow
control, congestion control, and reliability. Figure 1 depicts
a schematic view of the interaction between sender and re-
ceiver in TCP, together with several state variables.
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Figure 2. RCP functionalities at the sender
and receiver

Observe that except for connection management, which
needs to be implemented at both ends, Figure 2 indicates
that RCP delegates all other control functions to the re-
ceiver. Thus, either the sender or receiver can initiate con-
nection setup, after which the receiver becomes fully re-
sponsible for reliability, flow control, and congestion con-
trol, using the same window-based mechanisms employed
in sender-driven TCP. Since RCP shifts the control of data
transfer from the sender to receiver, the data-ack style of

1 While we focus on RCP, similar receiver incentives and protocol vul-
nerabilities hold whether protocols delegate some or all control func-
tions to receivers, e.g., TFRC [10] and WebTP [12], respectively.

message exchange in TCP is no longer applicable. Instead,
to achieve the self-clocking characteristics of TCP, RCP
uses req-data exchange for data transfer, where any data
transfer from the sender is preceded with an explicit request
(req) from the receiver. Equivalently, the RCP receiver uses
incoming data packets to clock the requests for new data.
In summary, RCP represents a clone of sender-side TCP
which simply transfers all important control functionalities
to the receiver. (We interchangeably use the terms RCP and
receiver-driven TCP.)

However, the fact that all control functions are delegated
to receivers raises a fundamental security concern for mis-
behaving receivers that will manipulate protocol parame-
ters (all available at the receiver) and gain significant per-
formance benefits. This concern is amplified by the fact that
receivers would have the opportunity (open source operat-
ing systems requiring a minor change), and incentive (faster
web browsing and file downloads) to perform such activi-
ties.

3. Vulnerabilities

3.1. Receiver Misbehaviors

Here, we treat two classes of misbehaviors in the con-
text of receiver-driven transport protocols: denial-of-service
attacks and resource stealing. The key distinction between
the two lies in the primary goal of the misbehaving client:
DoS attackers aim to deny service to the background flows
without necessarily achieving a particular benefit for them-
selves, whereas resource stealers aim to gain a performance
benefit by stealing resources from the background flows
(without necessarily starving them).

3.1.1. Denial of Service Attacks We begin with an ex-
treme scenario and show that an RCP sender can become
an easy target of a DoS attack. Indeed, Figure 2 shows that
the RCP sender listens to the request packets from the re-
ceiver, and replies by sending data packets without any con-
trol, as all control functions are delegated to the receiver for
performance reasons. Hence, flooding the sender with short
req packets (the same size as the ack packets, �40 Bytes)
may force the RCP sender to flood the reverse path (from
the server to the client) with much longer data packets (typ-
ically �1500 Bytes), and congest the network.

To demonstrate the vulnerability of fully receiver-driven
transport protocols, we simulate the above request-flood at-
tack and show the result in Figure 3. In the experiment,
seven TCP Sack flows share a link, and at time 300 sec, an
RCP flow joins the aggregate (we provide the exact simula-
tion parameters in Section 5). However, we remove the con-
gestion control functions from the RCP flow (by re-tuning
the appropriate RCP parameters at the receiver - details are
given below), such that it floods the server with requests.
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Figure 3. RCP receiver performs a DoS attack
by flooding the sender with requests

Consequently, the RCP flow utilizes the entire bandwidth
and denies service to the background traffic by exploiting
TCP’s well-known vulnerability to attacks by high-rate non-
responsive flows.

3.1.2. Resource Stealing In contrast, an unscrupulous re-
ceiver may moderately re-tune its parameters in an attempt
to steal bandwidth from other flows in the network while
eluding detection. Indeed, we will quantify the extent to
which it is harder to detect flows that moderately disobey
some (but not all) congestion control rules (e.g., decrease
the window size upon a packet loss, but do not halve it),
than it is to detect flows that dramatically violate one or
more congestion control rules.

While the space of possible receiver misbehaviors is
vast, we focus on parameter-based misbehaviors simply be-
cause they are easy to implement. While receivers could
clearly use other mechanisms to achieve similar rates, we
demonstrate in Section 5 that this does not affect the detec-
tion problem. Furthermore, in this paper we do not treat the
problem of application-level misbehaviors such as parallel
download (where a malicious user opens multiple transport-
layer connections to parallely download different partitions
of a file from a server), which are easier to detect. Never-
theless, observe that the misbehaviors analyzed in this pa-
per are much more generic: (i) they can be simply and en-
tirely implemented at the receivers; (ii) a malicious receiver
can achieve a performance benefit even in scenarios where
a single transport connection is used for download (e.g., in
the HTTP 1.1 web-server scenarios or in the non-partitioned
FTP-download scenarios).

The first parameter of interest is the additive-increase
parameter �, which has a default value of one packet per
round-trip time. By increasing the window size more ag-
gressively (� � �), a flow can achieve higher throughput.

The second parameter is the multiplicative-decrease pa-
rameter � which has a default value of 0.5 such that the
congestion window is halved upon the receipt of conges-
tion indication. Again, the receiver can potentially utilize
more bandwidth by decreasing the window only moderately

via � � ���.
The third parameter is the retransmission timeout RTO.

Both TCP and RCP use a retransmission timer to ensure
data delivery in the absence of any feedback from the re-
mote peer. In both cases, this value is computed using
smoothed round-trip time and round-trip time variation.
RFC 2988 [27] recommends to lower- and upper-bound this
value to 1 and 60 sec, respectively. Thus, a malicious re-
ceiver may easily change these values. For example, by set-
ting the RTO to a small value (e.g., 100 ms), one can expect
to achieve throughput improvements in high packet loss
ratio environments, because the misbehaving flow would
back-off significantly less aggressively than behaving flows
would.

Finally, the fourth parameter of interest is the initial
window size � . The default is two segments, whereas
RFC 2414 [1] recommends increasing this parameter to a
value between two and four segments (roughly 4 Kbytes)
to achieve a performance improvement. A misbehaving re-
ceiver might wish to further improve its performance (with-
out caring much about problems such as congestion col-
lapse), and increase this parameter even more. By doing so,
the receiver can maliciously jump-start the RCP flow (this
is exactly what we did, among other things, in Figure 3 by
setting � � ��) and improve its throughput. However, this
parameter is expected to be crucial in improving the short
file-size response times which are typical for web brows-
ing.

3.2. Modeling Misbehaviors

We begin with the well-known TCP throughput formula
(Equation (30) in [22]) that expresses average TCP rate B
as a function of the round-trip time RTT, steady-state loss
event rate p, TCP retransmission timeout value RTO, and
number of packets acknowledged by each ack b (typically
� � � [13]):

� �
�

���
�

���
� ���	�����
 	

�
���
� 
��� � 	���


�

(1)
Using the stochastic TCP model and methodology of

[22], we generalize the above result to a scenario with ar-
bitrary values of � and �. Denoting � as ��, we have �
approximated by

�

���
�

��������
������ ���	�����
 	

�
������������

���� 
��� � 	���

�

(2)
We provide the derivation in [16]. Note the two corner

cases: for � � � and � � ���, Equations (1) and (2) are
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equivalent; when � � � (when � � �), then � � ��� , i.e.,
if the congestion window is never decreased upon a packet
loss, the throughput will theoretically converge to infinity.
We explore intermediate cases as follows.
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Figure 4. Long-time-scale misbehaviors - nu-
merical results

Figure 4 shows numerical results for TCP (and hence
RCP) throughput as a function of the packet loss rate. PFTK
denotes the formula from [22] (Equation (1), with � � � and
��� � �), while SQRT is the “square-root” formula from
[19] (the same as Equation (1), only without the RTO part).
Next, we plot the throughput that a malicious receiver can
achieve, according to the Equation (2), by manipulating �,
�, and RTO (exact values are shown in the figure).

First, observe that by re-tuning � to four, one can dou-
ble the throughput (y-axis is in logarithmic scale), while re-
tuning � to 0.8 (� � ����) one can steal somewhat less
bandwidth. More generally, according to Equation (2), set-
ting � to a value larger than one, enables a flow to achieve
approximately

�
� higher throughput as compared to a

well-behaved TCP flow and for the same packet loss rate.
Second, notice that the amount of stolen bandwidth (the
difference between the misbehaving and the PFTK curve)
increases as the packet loss ratio increases in the case of
the RTO parameter (e.g., ��� � ���ms). This is because
timeouts occur more frequently in higher packet-loss-ratio
environments, and thus, disobeying the exponential back-
off rules enables significant throughput gains in such envi-
ronments. Furthermore, by re-tuning all parameters together
(� � �, � � ��	, ��� � ���), the model predicts signif-
icant stealing effects, where the misbehaving flow utilizes
approximately ten (for 	 � ����) to twenty (for 	 � ���)
times more bandwidth than behaving flows. Finally, observe
that the SQRT formula significantly overestimates the TCP-
friendly rate for higher packet loss ratios (where the expo-
nential backoffs play a key role), hence this formula is not
suitable for detection purposes.

4. Network Solutions

Here we analyze several state-of-the art network solu-
tions (both core- and edge-based) designed to detect mali-
cious flows. Common to all solutions is their fundamental
limitation to accurately detect such flows due to their lack
of the knowledge of the actual flows’ parameters.

4.1. Core-Router-Based Solutions

4.1.1. RED-PD In [18], Mahajan et al. develop RED-PD,
a scheme that uses the packet drop history at a router to de-
tect high-bandwidth flows in times of congestion, and pref-
erentially drop packets from these flows. In order to de-
tect high-bandwidth flows, RED-PD sets a target bandwidth
above which a flow is identified as malicious. The target
bandwidth is defined as the bandwidth obtained by a refer-
ence TCP flow with the target RTT (default is 40 ms), and
the current drop rate measured at the output router queue.
The targeted bandwidth is computed using the square-root
TCP-friendly formula. In other words, in the absence of per-
flow RTT measurements, RED-PD sets the target RTT to
40 ms as a bound for distinguishing in- vs. out-of-profile
flows.
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Figure 5. RED-PD is unable to detect a mali-
cious flow

While RED-PD can protect the system against certain
misbehaviors, the lack of exact knowledge of the flow’s
RTT fundamentally limits its ability to detect severe end-
point misbehaviors as demonstrated in Figure 5. We per-
form ns experiments with nine flows sharing a RED-PD
router. We vary the round-trip times of the flows from 20
to 350 ms (as shown on the x-axis), and plot the bandwidth
of a single flow on the y-axis. When all flows are well-
behaved, the bandwidth share is fair (the straight line in the
figure). However, when one of the flows (whose normalized
throughput is shown on y-axis) re-tunes � to 25, it can po-
tentially steal up to five times more bandwidth than its fair
share according to Equation (2). Observe that RED-PD suc-
cessfully limits the malicious flow to its fair-share, but only
when the RTT is less than or equal to 40 ms (recall that this
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is the RTT of the reference flow). However, as the flows’
RTT increases, the malicious flow is able to steal more and
more bandwidth, up to five times more than its fair share
(the maximum for this scenario) when the RTT is 350 ms.

RED-PD’s limitations in detecting misbehaving flows
are more general than indicated in the above example. First,
it is important to notice that a misbehaving flow can steal
bandwidth not only in homogeneous-RTT scenarios as in
the above experiments, but also in heterogeneous-RTT en-
vironments, since the amount of stolen bandwidth depends
on the RTT of a misbehaving flow. Second, while in this
paper we focus on receiver-driven transport protocols, ob-
serve that the above RED-PD limitations apply equally to
sender-based TCP stacks. Another problem arises from the
fact that RED-PD uses a simple (and less accurate) square-
root formula, which significantly overestimates the TCP-
friendly rate for higher packet loss ratios because it doesn’t
account for retransmissions [22]. Hence, malicious TCP or
RCP flows have the opportunity to steal dramatically more
bandwidth as the packet loss ratio increases, e.g., 100 times
more when � � ���, as indicated in Figure 4.

Finally, RED-PD’s inability to determine with high con-
fidence if a flow is malicious or not, limits its ability to pun-
ish a malicious flow (e.g., to completely starve it). Hence,
“stealing pays off” for endpoints as they can freely re-tune
their parameters without adverse effects: (i) they will not be
completely starved; (ii) they will not utilize less bandwidth
than a well-behaving TCP or RCP would; and yet (iii) they
can quite often steal significant amounts of bandwidth.

4.1.2. Fair Queuing While it may appear attractive to ap-
ply some version of fair queuing (including the preferential-
dropping schemes developed to enforce fairness among
adaptive and non-adaptive flows, e.g., Flow Random Early
Detection (FRED) [17], CHOKe [24], or Stochastic Fair
Blue (SFB) [8]) to solve the above problem, observe that
such schemes are also unable to detect end-point misbe-
haviors and to enforce the proportional fairness targeted
by TCP. Moreover, in a heterogeneous RTT environment,
such schemes will significantly deviate from the propor-
tional bandwidth share, and even magnify the bandwidth-
stealing effects. Below, we provide a simple, yet illustra-
tive example. While not representative of an actual or real-
istic scenario, our main goal is to illustrate the difference
between proportional (RTT-dependent) and max-min fair-
ness as enforced by FQ.

Consider a link shared by three congestion-
controlled flows, such that the proportional fair share
is (0.9,0.05,0.05). Next, assume that flow 2 is mali-
cious. It re-tunes its parameters and utilizes more band-
width by stealing from flow number one, such that
the bandwidth share is now (0.7, 0.25, 0.05). How-
ever, if FQ is used, all flows get their “fair-share”, and the
bandwidth share is now (0.33, 0.33, 0.33). Thus, FQ pro-

vides even more bandwidth to flow 2 than it could have
stolen without it.

4.2. Edge-Router-Based Solutions

Here, we present two solutions whose goal is to detect
non-TCP-friendly behavior at the network edge. The key
advantage of an edge-based vs. a network-based scheme is
the opportunity to monitor packets in both directions (data
in forward, and ack in reverse).

4.2.1. D-WARD In [21], Mirkovic et al. develop
D-WARD, an edge-router based protection scheme for de-
tecting DoS activity. For each traffic type, they establish
a baseline traffic model. For a TCP session, they mea-
sure both outgoing (data) and incoming (ack) traffic and de-
fine the maximum allowable ratio of the two. When the
ratio of the number of data vs. the number of ack pack-
ets goes over a certain threshold, they conclude that the
flow is out of profile and rate-limit it.

While the above scheme may indeed protect against
TCP-based denial-of-service attacks (where the sender
floods the network with data packets independent of
the feedback from the receiver), this model clearly
doesn’t apply to the receiver-driven TCP scenario. Re-
call that in the receiver-based scenario, the number of
requests and data packets is the same in both direc-
tions, even in the most severe denial-of-service scenarios.
Moreover, the fact that the number of packets in the for-
ward (data) and reverse (req) directions is the same is
actually the core idea of the request-flood attack: the re-
ceiver floods the sender with requests, and the sender
replies by transmitting the same number of data pack-
ets, yet with significantly larger size thereby congesting the
network.

4.2.2. Tcpanaly In [26], Paxson presents tcpanaly, a
tool whose initial goal was to work in one pass over a packet
trace by recognizing generic TCP actions. The goal of exe-
cuting only one pass stemmed from the objective that tcp-
analy might later evolve into a tool that could monitor an
Internet link in real-time and detect misbehaving TCP ses-
sions on the link. Unfortunately, the author was forced to
abandon both of the goals. Among many obstacles, the key
one is that one-pass analysis proved difficult due to vantage
point issues (see reference [26] for details), in which it was
often hard to tell whether a TCP flow’s actions were due to
the most recently received packet, or one received in the dis-
tant past.
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5. An End-Point Solution

5.1. Sender-Side Verification

In order to detect receiver misbehavior, the sender re-
quires increased functionality beyond its role as a slave to
the receiver’s request packets (see Figure 2). Our objective
is to add the minimum functionality to the sender that will
enable it to robustly detect receiver misbehavior over long-
time scales (we treat the short-time-scale misbehavior de-
tection problem in Section 6.1), yet without any help from
a potentially misbehaving receiver. While this new func-
tionality inevitably increases the sender-side implementa-
tion complexity, we will demonstrate that it represents a
general solution to the bandwidth-stealing receiver-induced
misbehaviors.
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Figure 6. Secure RCP sender

Figure 6 depicts the key components of such a solution.
Equation (1) indicates that knowledge of RTT and packet
loss ratio is enough to compute the TCP-fair throughput,
and consequently to detect out-of-profile flows. Unlike in
network-based scenarios discussed in Section 4, an end-
point scheme can measure RTT and the packet loss ratio,
and hence enforce a more precise traffic profile than any
network-based solution.

Because the sender must estimate RTT and packet loss
ratio without any cooperation from the untrusted receiver,
the sender transmits ping packets that the receiver has no in-
centive to delay, as a larger RTT implies a lower bandwidth
profile.2 Likewise, the sender must estimate the packet
loss ratio and detect whether the receiver is actually re-
requesting data packets that are dropped. Observe that a
node performing a DoS attack need not re-request dropped
packets, whereas receivers that are stealing bandwidth will

2 If the receiver doesn’t reply to the ping requests, the sender may either
disconnect it, or rate-limit it to a moderate rate. Moreover, to prevent
the receiver to simply send a response in anticipation of a ping request
(thus thereby simulating a smaller RTT), the sender should randomize
the period between the ping messages.

be forced to re-request packets for a reliable service. In any
case, one possible solution to the above problem is for the
sender to purposely drop a packet to test if the receiver will
re-request it as the absence of a repeated request for the
dropped packet would indicate a potential DoS attack. Note
that this is a backward-compatible technique that could be
used instead of the proposed nonce technique [6]. Neverthe-
less, here we focus on bandwidth-stealing scenarios where
the receivers are forced to re-request dropped packets for a
reliable service.

Once the RCP sender estimates RTT and the packet-
loss-ratio, it can compute the TCP-friendly rate. However,
because these parameters can vary significantly during a
flow’s lifetime, we apply the methods developed for TCP-
Friendly Rate Control (TFRC) [10] to estimate the TCP-
friendly rate in real time. Namely, while existing use of
TFRC focuses on setting the transmission rate based on
RTT and loss measurements, we utilize TFRC to verify TCP
friendliness using the actual RTT (measured via the ping
agent) and loss measurements incurred by the RCP flow it-
self.

In [25], Patel et al. designed an end-point scheme whose
goal is to verify TCP friendliness in the context of untrusted
mobile code. The key difference between our scheme and
the one from [25] is that our scheme aims to thwart possible
receiver misbehaviors, and hence does not require any co-
operation from a potentially malicious receiver. Moreover,
in contrast to the scheme from [25], which compares the
TCP sending rate to the TCP-friendly equation rate [22],
our scheme applies the TFRC protocol to estimate the TCP-
friendly rate in real time. This is particularly important in
the presence of highly dynamic background traffic; while
being an equation-based scheme, TFRC manages to adapt
to relatively short time-scale available-bandwidth fluctua-
tions [3].

Finally, by comparing the measured throughput (based
on the number of packets sent) and the throughput com-
puted by the TFRC agent, the control agent is able to detect,
and eventually punish, a misbehaving receiver. We do not
implement the control module in this work, as our primary
goal is to explore the ability of the above scheme to accu-
rately detect receiver misbehaviors. Alternatives to punish
include rate-limiting and preferentially dropping packets.
However, given that the scheme can indeed accurately de-
tect misbehaving receivers (to be shown below), the sender
may simply disconnect the misbehaving client, and in that
way discourage potentially malicious receivers from the
temptation to steal bandwidth.

5.2. Detecting Misbehaviors

5.2.1. TFRC Agent To robustly detect misbehaving re-
ceivers, it is essential to first evaluate the TFRC agent’s
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accuracy in measuring TCP friendliness. Computed TFRC
throughput may deviate from actual TCP throughput due
to measurement errors (low RTT sampling resolution, ping
packets sent once per second, etc.), system dynamics, and
inaccuracies in the underlying TCP equation. Thus, to man-
age the detection scheme’s false positives (incorrect decla-
ration of a non-malicious flow as malicious), such inaccu-
racies must be incorporated into the detection process.

We conduct ns simulation experiments and con-
sider a link shared by a number of TCP Sack flows (varied
from 1 to 600). The link implements RED queue manage-
ment and has capacity 10 Mb/s; we set the buffer length,
min thresh, and max thresh to 2.5, 0.25 and 1.25 times
the bandwidth-delay product, respectively. The round
trip time is 50 ms. Unless otherwise indicated, these pa-
rameters are used throughout the paper. We perform a
number of simulations, and present average results to-
gether with 95% confidence intervals.

To establish a baseline of TFRC’s behavior, we first
mount the TFRC agent on the sender side of a sender-
based TCP Sack [11] flow and present the results in Fig-
ure 7. The figure depicts the ratio of measured (TCP Sack)
vs. computed (by the TFRC agent) throughputs as a func-
tion of the packet loss ratio. When the measured vs. com-
puted throughput ratio is one, this indicates that the TFRC
agent exactly matches the TCP Sack throughput. Observe
that this is indeed the case for low packet loss ratios (for the
curve labeled as “TCP Sack”). As the packet loss ratio in-
creases, the curve moderately increases, indicating a slight
conservatism of the TFRC agent as the throughput com-
puted by the TFRC agent is slightly lower than the mea-
sured TCP Sack throughput. The problem of TFRC conser-
vatism has been studied in depth in reference [32]. In sum-
mary, the throughput computed by the TFRC agent deviates
from the TCP Sack throughput, yet the deviation is moder-
ate, even for high packet loss ratios.
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Figure 7. TFRC agent mounted on the sender
side of a well-behaved (a) TCP Sack and (b)
RCP Sack

Finally, we repeat the above experiment, but now mount

the TFRC agent on the RCP sender as in Figure 6. Observe
that the ratio of the measured (RCP Sack) vs. computed
throughput is somewhat higher than in the above sender-
based TCP Sack scenario. Indeed, RCP Sack has an im-
proved loss recovery mechanism (see reference [14] for de-
tails) and consequently improves throughput. The key prob-
lem is the sender side’s difficulty in determining whether
the receiver is trying to optimize its performance, or is sim-
ply stealing bandwidth. We treat this problem in detail in
Section 5.3. Here, we obtained the reference measurement-
based profile for a behaving RCP flow, which we will next
use to demonstrate the capability of an end-point scheme to
detect even moderate receiver misbehaviors.

5.2.2. Detecting Misbehaving Receivers Here, we im-
plement a misbehaving RCP node that re-tunes its conges-
tion control parameters �, �, and RTO at the receiver.
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Figure 8. Misbehaving receiver re-tunes the
additive-increase parameter �

We first re-tune the additive-increase parameter � and re-
peat the experiment above. Figure 8 depicts the measured
vs. computed throughput ratio for misbehaving receivers
(having � of 4, 9, 16 and 25), together with the same ra-
tio for the behaving RCP flow having � � �. Recall that the
left-most point on the curve corresponds to low loss and ex-
periments in which the RCP flow competes with a single
TCP Sack flow, whereas the right-most point on the curve
corresponds to high loss and a single RCP flow compet-
ing with 600 TCP Sack flows. Observe first that the mea-
sured vs. computed throughput ratios for misbehaving flows
clearly differ from the behaving flows’ profile, indicating
a strong potential for misbehavior detection (to be demon-
strated below). Second, observe that the throughput ratio for
misbehaving flows is approximately proportional to

�
� as

predicted by the model except for extremely low aggrega-
tion regimes (e.g., � � ���� in which a single RCP flow
competes with a single TCP Sack flow). In such low aggre-
gation cases, while the misbehaving flow indeed takes sig-
nificantly more bandwidth than the competing TCP Sack
flow (not shown), it is unable to fully utilize the bandwidth
due to frequent backoffs.
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Next, we explore misbehaviors that re-tune the
multiplicative-decrease parameter � and the retransmis-
sion timeout parameter RTO. Due to space constraints,
we skip the results and point an interested reader to refer-
ence [16]. The most interesting result is certainly the one
showing that by retuning the minRTO and maxRTO param-
eters simultaneously, it is possible to transform RCP (and
TCP) into a powerful DoS tool.

5.2.3. Detection Threshold Here we evaluate the
sender’s ability to detect receiver misbehaviors and study
the false-alarm probability and correct misbehavior-
detection probability. Denote meas thr as the throughput
measured by the RCP sender, and comp thr as the through-
put computed by the TFRC agent (as shown in Figure
6). Next, denote k as the threshold parameter, and de-
fine � ��� as

� ��� � �����
���	 
��

��� 
��
� ��� (3)

For example, � ��� denotes the probability that the mea-
sured vs. computed throughput ratio is larger than one,
whereas � ��� is the probability that the the measured
throughput is more than twice the computed one. If the re-
ceiver is behaving, then � ��� is the false-alarm proba-
bility (i.e., we falsely conclude that the receiver is mis-
behaving with probability � ���). On the other hand,
if the receiver is misbehaving, then � ��� is the cor-
rect misbehavior-detection probability (i.e., we correctly
conclude that the receiver is misbehaving with probabil-
ity � ���).
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Figure 9. Detecting out-of-profile flows

Figure 9 plots the false alarm probability (for the be-
having RCP flow), together with the correct misbehavior-
detection probabilities for three moderately misbehaving re-
ceivers (exact parameters are shown in the figure). We set
the packet loss ratio to 0.15 representing a scenario in which
the throughput ratio deviates (approximately) the most as
indicated in Figure 7. Consequently, the false-alarm proba-
bility for the behaving RCP flow is largest, indicating that

this scenario is the most challenging from the detection
point of view.

The key observations from Figure 9 are as follows. First,
note the tradeoff in setting the threshold parameter k. If it
is too small (e.g., � � �), we are able to detect the misbe-
having receivers with high probability, but the false alarm
probability is also one. On the other hand, if it is set too
high (e.g., � � �), the false alarm probability becomes zero,
but the correct misbehavior-detection probability also be-
comes zero. However, observe that the fact that the false-
alarm probability decreases faster (for smaller k), makes it
possible to set the threshold (e.g., � � ��� in this scenario),
such that the false positives are acceptably small, yet we are
able to detect all of the above cheaters with high probabil-
ity. Thus, this worst-case scenario confirms the high preci-
sion of the end-point scheme in detecting a wide range of re-
ceiver misbehaviors. However, we will next show that set-
ting the parameter k incurs an additional challenge when
confronted with versions of TCP employing performance
enhancements.

5.3. Advanced Congestion Control Mechanisms

There is a significant body of work proposed to improve
the TCP performance in wireless environments, where high
channel losses may disproportionately degrade TCP Sack
performance. Here, we briefly explain two well-known pro-
tocols, TCP-ELN [2] and TCP Westwood [4]. TCP-ELN
has been proposed to distinguish wireless random losses
from congestion losses. It relies on an external trigger to
classify the losses, and fast retransmits lost segments due
to wireless errors without decreasing down the congestion
window. It has been shown in [14] that when this mecha-
nism is applied in the receiver-driven protocol scenario, the
throughput improvements are quite significant (we repeat
this experiment and confirm the result below). Another pro-
tocol that significantly improves the throughput over wire-
less links is TCP Westwood (see details in [4]), and it is
expected that the same mechanism could provide further
throughput improvements in receiver-driven protocols. Be-
low, we focus on RCP-ELN and do not further consider
sender- or receiver-based TCP Westwood.

We first simulate an RCP-ELN flow in a lossy wireless-
like environment. Figure 10 depicts the measured vs. com-
puted throughput ratio as a function of loss. Observe that the
RCP-ELN throughput ratio increases significantly as com-
pared to the RCP Sack profile, indicating that RCP-ELN
indeed significantly improves throughput, e.g., achieving a
six-fold increase for a loss ratio of 0.17. However, the key
problem is that from the sender perspective, the RCP-ELN
flow is difficult to distinguish from a misbehaving flow.

Figure 11 depicts the false-alarm probability for the be-
having RCP-ELN flow for a packet loss ratio of 0.15. To
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emphasize the detection problem, we also plot the correct
misbehavior detection probabilities (without any advanced
congestion control mechanisms), with maliciously re-tuned
parameters (i) � � ��, (ii) � � ���, and (iii) � � �� and
� � ���. Observe that using a small threshold (e.g., � � �)
ensures a high detection probability for any of the above
misbehaviors, but we also falsely detect the RCP-ELN as
malicious. However, simply increasing the threshold k does
not eliminate the problem. For example, for � � �, the false
alarm probability for ELN-RCP is still one, while the proba-
bility to detect misbehaviors (i) and (ii) has already dropped
to zero. Finally, by using a very large k (e.g., � � � in this
scenario), we have an acceptably small false alarm proba-
bility for RCP-ELN, but are at the same time unable to de-
tect any of the (quite severe) receiver misbehaviors.

Thus, these experiments illustrate a fundamental trade-
off between system performance and security (the abil-
ity to detect bandwidth stealers), as both cannot be maxi-
mized simultaneously. Ironically, while advanced conges-
tion control mechanisms at the receiver significantly im-
prove throughput, the resulting false-alarm probability fur-
ther increases, further emphasizing the tradeoff. We believe
that setting the parameter k to a larger value strikes the
best balance for the file- or streaming-servers in the Inter-
net. A large value protects servers from severe denial-of-
service attacks, while enabling innovation in protocol de-

sign by preserving the performance benefits of receiver-
centric transport protocols. The downside is the fact that we
are unable to detect some bandwidth stealers. In contrast,
strictly enforcing today’s TCP-Sack throughput profile via
a lower k would indeed make it possible to catch even mod-
est bandwidth stealers. However, a small k would remove
most of the RCP benefits, and indeed remove the incentive
for designing and deploying enhanced TCP stacks.

6. Short Time Scale Misbehavior

The secure RCP sender is designed to detect receiver
manipulations of congestion control parameters (e.g., �,
�, RTO) that would enable the receiver to steal bandwidth
over longer time periods. Hence, these misbehaviors can be
detected on longer time-scales. However, very short-lived
flows transmitting up to tens or hundreds of packets are
common in today’s Internet due to web traffic. Below, we
treat the problem of short time-scale misbehaviors and dis-
cuss possible solutions.

6.1. Initial Congestion Window

We consider web RCP flows that increase their initial
congestion window in order to obtain decreased response
time. The web-browsing simulation scenario consists of a
pool of clients and a pool of web-servers, while the bot-
tleneck link is 10 Mbps. We adopt the model developed in
[7] in which clients initiate sessions from randomly chosen
web sites (the server pool) with several web pages down-
loaded from each site. Each page consists of several ob-
jects, which are downloaded by either TCP or RCP, depend-
ing on the client (all the servers in the pool support both
options). There is a single misbehaving client in the client
pool, which uses a mis-configured RCP (details are given
below), while the other clients from the pool behave and
use unmodified TCP Sack.
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While it may appear attractive for a malicious client to
maximally increase the initial window size parameter W in
order to steal more and more bandwidth, this is not nec-
essarily a good option, especially in more congested envi-
ronments. This is illustrated in Figure 12, where we set the
link utilization to 90%, and the malicious clients sets the
initial window size parameter W to 100 packets. Here, this
greedy user significantly degrades not only the background
traffic (not shown), but also degrades its own response times
(shown in the figure) by an order of magnitude. This degra-
dation is due to the fact that when the malicious user sends
large bursts of requests, it forces the web server to reply
with large bursts of data packets, many of which are them-
selves lost in the congestion. These packet losses force even
the RCP user to enter the exponential backoff phase and
degrades its response time. To overcome the above prob-
lem, the malicious user needs to “turn off” the exponential
backoff timers. We do this by re-tuning the RTO parame-
ter to 100 ms. In this way, the malicious user is able both to
“push-out” and significantly degrade the background traf-
fic, and at the same time improve its own response times, as
also shown in the figure.

6.2. Solutions

Here, we explore two possible solutions to the above
short-time-scale misbehaviors. The first is to rate-limit
flows, which while effective in thwarting cheaters, is a
non-work conserving solution in which it is problem-
atic to determine the appropriate rate. The second solu-
tion is to have a “smart” RCP client at the sender side
that would enforce a “TCP-friendly” exponential win-
dow increase. It would estimate the RTT to the client,
and release the data packets accordingly. While also ef-
fective in thwarting cheaters, this approach unfortunately
mitigates some of the benefits of RCP.
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Figure 13. Protecting against short-time-
scale misbehaviors

To study the performance of the above solutions, we
compute and plot in Figure 13 the file-response times in

three different scenarios for the RCP flow with the avail-
able bandwidth of 10 Mb/s and RTT of 50 ms: (i) when a
malicious user sets the initial window W to 100 packets and
the sender does not rate limit (labeled as “Rcv. misbehav-
ing - Snd. unprotected”); (ii) the receiver sets� � ���, but
the sender rate limits to 200 kb/s (“Rcv. misbehaving - Snd.
rate-limited”) and (iii) the receiver is well behaving and is
not rate-limited (“Rcv. well-behaving - Snd. unprotected”).
Figure 13 illustrates problems in setting the rate-limit value.
Setting it to 200 Kb/s degrades the file response times sig-
nificantly, as shown in Figure 13.

But the key insight from the above experiment is that
using a large initial window sizes can significantly (up to
ten times in the above scenario - and much more in larger-
bandwidth networks) improve file response times. Such
methodologies have been studied in depth in [23, 33, 34],
but in the context of sender-based TCP, where the web-
server increases the initial window size in an attempt to im-
prove system performance. However, in the receiver-driven
RCP scenario, it is hard to distinguish whether the receiver
is jump-starting the TCP flow or is simply malicious. Thus,
applying rate limiting or the “smart” RCP client method-
ology may indeed protect the system against receiver mis-
behavior, but at the same time prevents attempts as in
[23, 33, 34] to improve performance. This illustrates the
tradeoff between system security and performance in that
strict enforcement of protocol rules would not only reduce
performance, but would also inhibit protocol innovation.

However, either rate-limiting or a “smart” RCP client has
to be strictly applied, because a receiver with an excessively
large W in combination with manipulated exponential back-
off timers can significantly degrade the legitimate back-
ground traffic (Figure 12). Yet, applying any of the short-
time-scale protection methodologies inevitably reduces the
incentive for receivers to use RCP for short-lived flows, as
sender-based TCP enhanced with jump-starting methodolo-
gies is able to achieve the best response-time curve from
Figure 13 without any security considerations.

7. Conclusions

Receiver-driven transport protocols delegate key con-
trol functions to receivers. While this radically new proto-
col design achieves significant performance and function-
ality gains in a variety of wireless and wireline scenarios,
we showed that a high concentration of control functions
available at the receiver leads to an extreme vulnerability.
Namely, receivers would have both the means and incentive
to tamper with the congestion control algorithm for their
own benefits. We analyzed a set of easy-to-implement re-
ceiver misbehaviors and analytically quantified the substan-
tial benefits that a malicious client can achieve.
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We evaluated a set of state-of-the-art network-based so-
lutions, and proposed and analyzed a set of end-point so-
lutions. Our findings are as follows. (1) Network-based so-
lutions are fundamentally limited in their ability to detect
and punish even severe endpoint misbehaviors. (2) End-
point solution can accurately detect long-time-scale receiver
misbehaviors and strictly enforce the TCP-friendly rate, but
such enforcement entirely removes the performance benefits
of receiver-driven protocols. (3) In the file- and streaming-
server scenarios, it is possible to strike an acceptable bal-
ance between protocol performance on one hand, and vul-
nerability to misbehavers on the other, due to the fact
that moderate bandwidth stealers do not represent a criti-
cal threat to the system security. (4) On the contrary, short
time-scale receiver misbehaviors can extremely degrade
the response times of well-behaving clients in the HTTP-
server scenarios; hence, such servers have to strictly apply
sender-based short-time-scale protection mechanisms; un-
fortunately, such mechanisms can often limit the receiver-
driven TCP performance to a level which is below the level
achievable by sender-based TCP.
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