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Abstract

Wireless links can exhibit high error rates due to atten-
uation, fading, or interfering active radiation sources. To
make matters worse, error rates can be highly variable due
to changes in the wireless environment. Researchers and de-
velopers have explored a wide range of solutions to optimize
communication in this difficult error environment, including
traditionalend-to-end solutions, link-layer solutions, and so-
lutions involving layer four processing inside the network. A
significant challenge is ensuring that systems with multiple
layers of error control avoid compromising performance by
duplication of effort.

We argue and demonstrate that protocol-independent link-
level local error control can achieve high communication
efficiency even in a highly variable error environment, that
adaptation is important to achieve this efficiency, and that
inter-layer coexistence is achievable.

The Logical Link Control layer of our WaveLAN-based
experimental LAN includes three error control mechanisms:
local retransmission,adaptive packet shrinking,and adaptive
error coding. Measurements generated on a variety of net-
work topologies and trace-based error environments demon-
strate excellent TCP performance improvements and good
coexistence with TCP’s end-to-end retransmission strategy.

1. Introduction

Wireless transmissions are subject to interference from
outside sources, absorption, scattering, fading, and inter-
symbol interference. This can result in very high error
rates. Moreover, since conditions change over time (due
to mobility or intermittent interference sources), the error
environment will also change. Such a variable, high error
environment can create problems for transport protocols and
applications. The networking community has explored a
broad spectrum of solutions to deal with wireless error envi-
ronments. They range from “local” solutions that decrease
the link error rate observed by upper layer protocols or appli-

cations to transport protocol modifications and proxies inside
the network that modify the behavior of the higher level pro-
tocols [3, 2, 29, 30, 9].

In this paper we focus on the problem of improving com-
munication in a wireless LAN. We show that purely local
error control, which does not require wired hosts to modify
their behavior or IP routers to understand transport or ap-
plication protocols, can be an effective approach to dealing
with the dynamic error environment of a wireless LAN. It
allows users to obtain a high percentage of the available link
bandwidth, even when using standard protocols such as TCP
in harsh error conditions. The key is to have local error con-
trol be aggressive so it maximizes throughput, adaptive so
error control overhead is paid only when needed, and de-
signed in such a way that it does not interfere with higher
layer protocols such as TCP. Our conclusions are based on
measurements of a wireless LAN that incorporates adaptive
local error control mechanisms. We also identify under which
conditions our results apply and discuss when more complex
solutions may be needed.

The remainder of this paper is organized as follows. In
Section 2 we discuss the tradeoffs between local and end-
to-end error control and consider local error control design
issues. A description of our Medium Access Control (MAC)
and Logical Link Control (LLC) protocols is found in Sec-
tion 3. We describe our approach, based on synthetic and
trace-based traffic loads, in Section 4 and present our syn-
thetic evaluation in Section 5. Section 6 describes packet-
shrinking and error coding extensions to the LLC layer,which
are subjected to trace-based evaluation in Section 7. We dis-
cuss related work in Section 8 and summarize in Section 9.

2. Local error control

In this section we first examine the tradeoffs between local
and end-to-end error control for wireless LANs and then
discuss design options for local error control mechanisms.



2.1. Local versus end-to-end error control

Addressing link errors near the site of their occurrence
seems intuitively attractive for several reasons.

First, entities directly connected by a link are the most
likely to understand its particular characteristics. For exam-
ple, it seems impractical for end-systems to track the current
propagationdelay for each link they use, nor feasible for them
to know which packet loss events represent congestion ver-
sus intermittent link errors (TCP’s assumption that most burst
loss is due to congestion is a well-known incorrect simpli-
fying assumption). Moreover, entities on the link are likely
to be able to respond more quickly to changes in the error
environment.

Second, local error control may be significantly more effi-
cient than end-to-end error control. If an error-prone wireless
link is the last hop on a path from a distant server to a mobile
client, end-to-end retransmission demands bandwidth on ev-
ery link, while local retransmission requires extra bandwidth
only where it’s truly needed.

Third, as a practical matter, deploying a new wireless
link protocol on only those links that need it is easier than
modifying transport code on millions of deployed wired ma-
chines. Application-level proxies address this problem to
some extent, but they are currently constrained to running
on end systems, whereas local error control can operate on
exactly the links that require it (such as a point-to-point link
connecting two LANs).

Despite these attractions, trying to do too much locally can
lead to its own problems [27]. In the case of local error con-
trol for links with highly variable error rates there are at least
three dangers. First, local error recovery mechanisms may
alter the characteristics of the network, which could confuse
higher layer protocols. For example, local retransmission
could result in packet reordering or in large fluctuations of the
round-trip time, either of which could trigger TCP timeouts
and retransmissions. Second, local and end-to-end error con-
trol are adaptive mechanisms that may respond to the same
events. This could result in undesirable interactions, causing
inefficiencies and potentially even instability. A very simple
example is duplicate retransmissions generated by the local
recovery protocol and by TCP. These can result in excessive
link bandwidth consumption or, worse, queue overflow. Fi-
nally, a given data packet may bear informationwith a limited
useful lifetime, so any retransmission may be wasted effort.
For example, it is better to drop a late audio packet than to
retransmit it, since retransmission may make the next packet
late as well.

Given the significant advantages of local error control, we
will pursue a purely local approach engineered to avoid the
drawbacks mentioned above.

2.2. Design tradeoffs for local error control

Once we decide to address wireless link errors locally, we
are faced with several options, ranging from purely local solu-
tions to solutions where the local error control interacts with
the higher layers in the protocol stack to avoid undesirable
effects.

There are several flavors of purely local solutions. The
lowest level solution is hardware error control techniques
such as adaptive codecs and multi-rate modems [20, 26].
While these are attractive in terms of simplicity, they may
leave a noticeable residual error rate. In addition, while they
reduce the average error rate, they can not typically differ-
entiate between packets belonging to different flows. For
example, in a shared-channel LAN different mobile stations
may experience widely varying error conditions (due to, e.g.,
different locations [10]); tracking the appropriate coding level
for different stations would be challenging with a transparent,
low-level hardware approach.

An alternative is “pure” link-layer approaches such as
IEEE 802.11 [15], MACA [17], and MACAW [5] that apply
error controlon a per-packet basis and do so in a protocol-and
application-independent fashion. These mechanisms can po-
tentially be made “flow-aware” (rather than protocol-aware)
by tailoring the level of error control to the nature of the flow
(e.g., bounding retransmission for packets with a limited life-
time). Flow information could be obtained through protocols
such as RSVP [6] or the IP type-of-service header bits [12].

“Protocol-aware” link-layer protocols [3] may inspect the
packets they pass in order to give special treatment where it
is most needed. While this can significantly improve per-
formance, it requires gateways to understand a wide variety
of transport or even application protocols. The Internet cur-
rently carries a wide variety of incompatible streaming audio
and video protocols, and this situation seems likely to persist.
The development of protocols and the development and de-
ployment of parsers could evolve into an “arms race” between
protocol designers and network administrators.

Solutions that require network support at the highest level
in the protocol stack are “gateway-style” or “indirect” error
control [2, 7, 3, 29] which perform significant and stateful
protocol translation, or even data transcoding [30, 14], at the
border of two subnets with greatly differing characteristics.
In addition to potentially needing to understand multiple pro-
tocols, this approach faces significant challenges when net-
work routing changes, as state must be migrated from one
gateway to another.

In this paper we evaluate the performance of “pure” link-
layer error control. The first reason is its simplicity. A
second reason is that a number of protocols incorporating
link-layer error control are being defined and deployed (e.g.,
802.11 [15], MACA [17]), so information about TCP inter-
actions may be valuable to these efforts. We focus on the
case of reliable data transfer using TCP, which is by far the



most widely used transport protocol. Our approach is purely
link-layer in the sense that it treats packets as opaque, not
depending on the TCP (or even IP) specification or imple-
mentation, although, as we discuss below, our results suggest
that link-layer error control may benefit from awareness of
flow-specific characteristics.

Our evaluation consists of two parts. First, we will ob-
serve how purely local error control improves the perfor-
mance of TCP, operating in a wide variety of situations. To
understand the interactions between local error control and
TCP, we use simple local error control based on local re-
transmission only (Section 3) and apply synthetic burst loss
patterns designed to provide particular stresses (Section 5).
These results provide a LAN-independent case for straight-
forward, protocol-independent local error control increasing
TCP throughput under a broad set of conditions. Second, we
present a more realistic evaluation based on a more sophisti-
cated adaptive local error control implementation (Section 6)
and WaveLAN-specific error traces (Section 7).

3. MAC and LLC

We describe the design and implementation of our
media access control (MAC) protocol, extensions for
retransmission-only error control, and briefly characterize
performance of our experimental system.

3.1. MAC design

The goal of our MAC protocol design was building a
vehicle for investigating the design and effectiveness of local
error control and interactions between protocol layers, rather
than designing a new standard or validating an existing one.
Our focus is on a pico-cell environment with a small number
of mobile stations and a backbone-connected base-station
responsible for connecting the cell to the rest of the Internet.

Our resulting MAC is based on master/slave transactions.
A master, presumably the base station, periodically sends a
message to each mobile slave; the message can transfer data
to the slave, and may invite the slave to transfer data itself.
Two types of transactions are relevant to this paper. First, the
INVITE and JOIN messages are used to add new mobile hosts
to the master’s polling list. Second, POLL-DATA and DATA-
ACK are used for data transfers. The POLL-DATA message is
sent by the master; it is used to transfer data to the slave and
to invite the slave to send data. The slave responds with an
DATA-ACK message that acknowledges the master’s packet
and can return data, if requested.

The operation of the MAC is similar to the IEEE 802.11
Point Control Function [15]. Clearly, many features could be
added. For example, one could add contention periods, sim-
ilar to the 802.11 Distributed Coordination Function (DCF).

Master sends Poll-Data packet:
may include data, ack/nack for last data transfer
from slave, and an invitation for data from slave

Slave sends Data-Ack packet:
may include data, and ack/nack for

last transfer from master

Master times out
Master decodes

Data-Ack

Poll-Data
lost

Poll-Data
delivered

Master updates its
 transmission status

Data-Ack
lost

Data-Ack
delivered

Slave decodes Poll-Data packet:
updates its transmission status

and forwards data if correct packet

Figure 1. MAC and LLC actions

3.2. LLC design

In a wireless environment, data packets may be lost en-
tirely, partially lost due to truncation, or corrupted by bit
errors. The simplest error control mechanism, stop-and-wait
retransmission, addresses all three as follows. First, both
parties (master and slave) keep copies of each data packet
until they receive an acknowledgement from the other party.
Second, fields are added to the POLL-DATA and DATA-ACK

headers to store acknowledgement information for data pack-
ets flowing in the opposite direction. The resulting actions
executed by the MAC and LLC layers on both master and
slave are shown in Figure 1.

3.3. Implementation and Performance

Our hardware platform is Intel 80486 and Pentium laptops
using 915 MHz PCMCIA card WaveLAN units. We dis-
abled the WaveLAN backoff protocol by programming the
embedded Ethernet controller to make only one transmission
attempt per packet. This allows us to schedule non-colliding
packet transmissions. The master/slave polling protocol was
then implemented in software on top of this basic packet
transmission function. The master continuously polls slaves,
mixing INVITE requests for new mobile hosts with POLL-
DATA requests to known mobile hosts in the cell. In our
experiments, one laptop operates as a master/base station,
while the other laptops use the slave protocol. The protocol
is implemented in a kernel device driver for NetBSD Unix.

The WaveLAN hardware has a nominal throughput of 2
Mb/s, which drops to about 1.8 Mb/s after considering the
effects of headers and standard MAC overhead. A standard
Ethernet-style WaveLAN driver achieves 1.4 Mb/s for a sin-
gle TCP stream between two hosts, compared to .8 Mb/s
when using our MAC protocol. This 43% loss in throughput
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Ethernet
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Figure 2. Hosts used in experiments

is a result of the high per-packet overhead of our software
MAC implementation. However, this throughput is credible,
and a reasonable starting point for our research.

Clearly, MAC designers with control over hardware-level
microengines can improve on this implementation, especially
in regard to performance. The software path on the slave to
respond to a poll from the master represents a non-trivial
source of overhead.

4. Experimental approach

Our evaluations were performed using laptops running
our experimental system. Our “base station” was a 25 MHz
80486 DECpc 425SL and our client was a 75 MHz Pentium
Toshiba Satellite Pro 400CDT, both running NetBSD 1.2.
The base station was connected to our campus Ethernet and
routed traffic between it and the client. There was no at-
tempt to provide a “clean room” network environment or to
make tests only at certain times of day, but we didn’t observe
substantial variation between experiments.

Experiments were run in both a LAN and WAN environ-
ment (see Figure 2). The LAN experiments used an Ethernet
segment in addition to the wireless link. For the WAN exper-
iments, we used a remote host at NCAR, 6 hops away from
our wireless LAN. The round-trip time between CMU and
NCAR is approximately 40 milliseconds; the path is lightly
loaded and essentially lossless.

Performing repeatable and comparable experiments in a
wireless environment is challenging because the events in
the wireless environment are hard to control. We address
this problem by relying on a “packet killer” in the kernel
device driver to drop or corrupt packets in a controlled fash-
ion. The killer operates on a variable-length repeating list
of packet error events, and applies appropriate errors (e.g.,
packet loss) to each packet as it is transmitted, received, or
both, depending on the error trace. By replaying the same list
of packet error events, we can repeat experiments, or directly
compare the effectiveness of different error control strategies
in the same (emulated) error environment. The packet killer
emulates packet loss on output by setting the Ethernet desti-
nation MAC address to a constant unused by any WaveLAN
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Figure 3. TCP versus data-packet loss in
bursts of one to eight packets per hundred.
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Figure 4. TCP encountering 2% packet loss in
2-packet bursts.

unit, so that appropriate air time is consumed. On input, a
loss event is handled by the device driver’s interrupt routine
immediately discarding the packet.

5. Pattern-based evaluation

In this section, we will compare the performance of TCP
with and without local error control. To understand interac-
tions between local and end-to-end error control, we disabled
packet shrinking and error coding, leaving only local retrans-
mission, and employed simple synthetic packet loss patterns.

We will demonstrate the well-known severe degradation
of TCP performance in the face of modest packet loss, show
how local retransmission avoids this unfortunate situation in
a variety of situations, and present a more general analysis of
when local retransmission appears to be attractive.

5.1. Basic robustness evaluation
We first focus on the simplest possible scenario: a single

TCP connection between a wireless slave and the master sta-
tion. Figure 3 shows the throughput of TCP without local
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Figure 5. TCP with link-level retransmission,
0% to 83% loss.
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Figure 6. Trace of TCP with link-level retrans-
mission, 83% loss.

retransmission. As for all the results in this section, each data
point summarizes the results of 5 1-megabyte runs; the error
bar denotes the range of observations and the point on the bar
denotes the mean. The error pattern for Figure 3 consists of a
singleburst of one to eight packets being dropped out of every
hundred packets, resulting in error rates between 1% and 8%.
We see that performance degrades quite quickly. TCP han-
dles single packet drops well, but, as we would expect, when
multiple packets per window are dropped, TCP congestion
avoidance and timeouts are triggered [16, 13, 21] and perfor-
mance drops by a factor of two. It continues to drop quickly
as the burst size increases. Conventional wisdom, supported
by recent work [22], says that TCP Reno can handle packet
loss rates of up to 1-2%; our results support this conclusion,
given that burst losses are particularly challenging. Figure 4
shows aTCPDUMPtrace of a representative observation from
the 2% loss (2-packet burst) case of Figure 3. We see that
timeouts substantially degrade performance.

Figure 5 shows the throughput of TCP when we enable
local retransmission. Five-packet bursts were dropped from
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Figure 7. Effect of packet loss on TCP, Ethernet
transmitter.

windows of 6, 12, 25, 50, and 100 packets to yield a variety of
loss rates. Note that scale is very different from the scale in
Figure 3: it covers loss rates of 0-85% instead of 0-8%. We
see that, as the link capacity degrades linearly, the achieved
throughputdrops off in the same fashion, which is essentially
ideal. Figure 6 shows a TCP trace from the 83% loss case.
The reason that this works well is straightforward. The local
retransmission hides most of the packet loss on the wireless
link from TCP, so TCP stabilizes at a rate corresponding to
the average bandwidth of the wireless link.

5.2. A broad set of scenarios

Above we evaluated local retransmission in a very re-
stricted scenario with the intent of understanding its behavior.
In practice a wide range of conditions may impact the effec-
tiveness of local retransmission. In this section we evaluate
its performance under a diverse set of conditions.

So far we have presented results where only a single link is
involved. A slightlymore complex topology involves a single
Ethernet segment and our (bottleneck) wireless link. Figure 7
shows the throughput under a variety of loss rates from a 100
MHz Pentium system on the same Ethernet segment as the
base station. The presence of the additional link makes no
noticeable difference in throughput; reversing the direction
of flow (not shown) results in the same performance.

Figure 8 extends our investigation to a WAN connection
from our campus across the vBNS to a Cray at ucar.edu. The
network path comprises our base station, our departmental
gateway, two intermediate nodes at our service provider, a
vBNS hop, the UCAR gateway, and the Cray. The round-trip
time is approximately 40 milliseconds. Again, we observe
that local retransmission results in consistently good perfor-
mance; reversing the flow direction (not shown) yields no
significant difference. The reduction in best-case rate from
100 to 70 kilobytes per second is due to the combination
of TCP’s smaller long-haul maximum segment size and the
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Figure 8. Effect of packet loss on TCP, distant
transmitter.
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Figure 9. User throughput of four competing
TCP streams.

high per-packet cost of our software MAC implementation
(Section 3).

Figure 9 depicts the results of running four independent
TCP streams over our local retransmission protocol. Each
point represents the throughputof a single TCP stream during
a single run; five runs of four streams each time result in
twenty observations for each loss rate. Note that the distance
between the best and worst rates observed for each loss rate
is very small, even though they may be from different runs.

5.3. Analysis

In this section we analyze why local retransmission is
so effective. This allows us to identify the conditions that
must be met by local error control mechanisms for efficient
interaction with TCP.

5.3.1. Steady state conditions

We will begin by considering the simple case, a link with
a constant error rate. With local retransmission, the impact
of the wireless link on traffic will be similar to that of a

regular wired link. The relative slowness of many wireless
links means that buffer memory sufficient to smooth out long
burst losses is affordable. Assuming the wireless link is
the bottleneck, TCP congestion control will converge on the
link’s available throughput.

When we consider the steady state behavior of TCP, lo-
cal error control must meet several requirements for TCP to
exhibit stable behavior under steady error conditions:

� TCP interprets packet loss as a sign of congestion (Fig-
ure 3). This means that local error control should be
persistent enough that lost packets almost always indi-
cate congestion.

� Packet reordering results in the receiver generating du-
plicate acknowledgements, which will cause the sender
to infer packet loss or even congestion. Local error con-
trol mechanisms should avoid packet reordering since it
will cause unnecessary transport-level retransmissions,
and thus waste bandwidth. An alternative to avoid-
ing packet reordering is to avoid its negative effects
by, for example, suppressing duplicate acknowledge-
ments [3], but this requires special-case router code for
each supported transport protocol, a weakening of IP
semantics.

� TCP estimates the round-trip time and uses this esti-
mate to determine when it should back off and retrans-
mit data. If local error control can significantly delay
packets, round-trip times may become highly variable.
This could cause unnecessary timeouts and retransmis-
sions or, alternatively, excessive backoffs that would
unnecessarily delay later retransmissions. The round-
trip variability problem could be exacerbated by long
delays, suggesting that local retransmission may not
be effective on satellite links.

5.3.2. Dynamic error environment

Beside steady state conditions, we also must consider the
case that error conditions improve or degrade. If error con-
ditions improve, the usable capacity of the link will improve
and periodic probes by TCP senders will discover and start
using the excess bandwidth. If error conditionsdegrade, local
error control will need to retransmit harder to transfer packets
across the wireless link. The result is that the queue will drain
more slowly and will eventually overflow, causing packets to
be lost. This will cause TCP to back off and retransmit the
lost packets. Since we have a congestion condition, this is
exactly the right response.

5.3.3. Persistence of local error control

Local error control is not an all or nothing arrangement, but
error control strategies with different degrees of effectiveness
and persistence can be implemented. This raises the question
of how effective local error control must be to satisfy TCP.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.000001

0.00001

0.0001

0.001

0.01

0.1

1

P
ac

ke
t l

os
s 

pr
ob

ab
ili

ty

Local error probability

no retransmit

1 retransmit

2 retransmits

3 retransmits

4 retransmits

5 retransmits

Figure 10. End-to-end packet loss rate as a
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transmit count

Figure 10 shows how the (end-to-end) packet drop rate
changes as a function of the local packet loss rate and the
maximum retransmit count, assuming steady state conditions
and random errors (of course, the residual error after a fixed
number of retransmissions will be higher if errors are bursty).
Not surprisingly, the results show that, for high error envi-
ronments, retransmission may need to be very persistent if
we want to keep the packet drop rate below 1%. As we dis-
cussed in Section 5.1, TCP performance degrades quickly if
the (end-to-end) packet loss rate is more than a few percent,
so limiting the number of retransmissions to a small constant
will work well only if wireless packet loss rates are low.

A potential drawback of persistent local retransmission is
that it may delay packets significantly. This may result in
interference with TCP retransmission [9, 3]. To better under-
stand what happens in such conditions, we created an error
environment that should cause competing retransmissions.
We chose a pattern that alternates between transferring 400
consecutive packets without errors, which will lull TCP into
believing that the link has high throughput and low latency,
and dropping 100 consecutive packets, which will cause a
sudden significant delay and should trigger a TCP timeout.

Figure 11 shows the packet trace for a single-hop TCP flow
encountering this error pattern. The test program reported
a throughput of 64 KB/s, about 80% of the link capacity
available after packet loss (80 KB/s). The trace shows that
between the error bursts TCP performs well. Figure12 shows
in moredetail what happens during an error burst. Weobserve
two types of redundant packet: “probe” packets used by
the sender to reestablish contact, and a sequence of packets
retransmitted after the pause, which TCP incorrectly believes
were lost. While we do have redundant retransmissions, the
amount of overlap is only about 3%.

For local error control to perform well, end-to-end re-
transmission timeouts should be substantially longer than the
single-hop round-trip time. Many TCP implementations are

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

T
C
P
 
s
e
n
d
 
s
e
q
u
e
n
c
e
 
n
u
m
b
e
r
 
(
k
i
l
o
b
y
t
e
s
)

Time (seconds)

Figure 11. Trace of competing-retransmission
scenario: 100-packet burst every 500 packet
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Figure 12. Zoomed-in trace of competing-
retransmission scenario.

derived from the Berkeley “Net-2” implementation, which
implements retransmission using a periodic timer with a
“slow timeout” interval, typically 500 milliseconds. This
creates a “floor” on the end-to-end timeout that gives link-
level error control substantial time to hide error bursts. While
TCP implementors might choose a finer grain or impose a less
conservative minimum timeout (typically two “ticks”), this
relatively coarse timeout is supported by RFC 793 [25], which
suggests a minimum value of 1 second for the retransmission
timeout. Furthermore, preliminary work [24] suggests that
long-haul Internet connections may require a minimum re-
transmission timeout of at least one second to avoid many
false timeouts. As a result, long timeouts should be consid-
ered more a protocol feature than an implementation artifact.

It is also interesting to note that, regardless of the resolu-
tion of the timers, the values they are set to allow for some
variation. For example, many systems set the retransmission
timer to an estimate of the round-trip time plus four times
the mean deviation from that estimate [16]. This means that,
if a variable number of wireless link-level retransmissions



caused fluctuations in the end-to-end round-trip time, TCP
would tend to react by retransmitting more cautiously.

We conclude that retransmitting overly persistently, such
as the perpetual retransmission implemented in our simple
LLC, can hurt performance via inter-layer duplicate retrans-
missions. However, giving up after a few transmissions
has the potential to seriously compromise TCP performance,
while factors such as TCP’s adaptation to delay variation,
cautious minimum timeout, and slow-start probing seem to
allow persistent retransmission with only a small efficiency
loss. While these initial results are promising, clearly further
investigation would lead to better persistence heuristics for
coexistence with TCP.

5.4. Summary of local retransmission experiments
We believe these experiments demonstrate the potential

for a “pure link-layer” retransmission strategy to use lo-
cal knowledge to significantly and transparently enhance the
throughput of unmodified TCP in many difficult situations.
The main limitationof this approach seems to be that it cannot
hide pathologically long delay bursts from TCP, which may
respond with a small amount of duplicate retransmission.
On the other hand, when the delay period is over, the order-
maintaining queue structure allows TCP to recover smoothly.
Note that, while in our experiments the wireless link was the
first or last segment in the path, the analysis suggests this
is not critical: what matters is that the conditions listed in
Section 5.3.1 are met.

While we have encouraging results for TCP, which is by
far the dominant reliable data transport protocol, it seems
clear that other applications, such as streaming video, could
require different low-level retransmission policies. Luckily,
the Internet seems to be evolving in the direction of mak-
ing flow-type information available to link-layer elements
via type-of-service marking [12] or RSVP-like protocols [6].
Different low-level error control policies could be imple-
mented for packets belonging to flows of different types. For
example, for delay-sensitive traffic such as interactive video
or audio transfers, local retransmission could be less persis-
tent since packets “expire” after a certain time interval.

6. Adaptive local error control

We discuss the error environment for a particular network
(WaveLAN) and present the design and implementation of
more sophisticated adaptive local error control for such net-
works. We discuss its performance for both TCP and UDP
streams in the next section, extending the pattern-based eval-
uation of the previous section to “real-world” situations.

6.1. LLC Design
An extensive study of the error characteristics of a wire-

less, in-buildingLAN is presented in [10]. The study showed
that three classes of errors are common: packet loss, packet

truncation, and bit corruption errors. While a simple local er-
ror control strategy would retransmit the packet in all of these
cases, analysis shows that corrupted packets often have only a
few bit errors and that truncation is rare for short packets. This
suggests that packet shrinking and forward error correction
(FEC) could be used to reduce the impact of packet truncation
and bit corruption errors. However, given the high variabil-
ity of the error environment, these techniques would need to
be applied adaptively to avoid unnecessary overhead when
conditions are good. A simulation-based evaluation [11] of
adaptive packet shrinking and FEC shows that these tech-
niques can significantly increase the useful throughput of a
wireless LAN, using relatively simple adaptation policies.
Given these results, our LLC combines adaptive FEC and
packet shrinking with local retransmission.

6.2. LLC Implementation

Adaptive packet shrinking and FEC can be added fairly
easily to the MAC and LLC implementations described in
Section 3. Two changes are needed.

First, packet shrinking and FEC functionality must be
added to the the packet send and receive functions. While it
is possible to do end-to-end management of packet shrink-
ing by adjusting the maximum transmission unit (MTU) of
the wireless link and propagating this information to end
systems, or by employing IP fragmentation, both approaches
have substantial per-packet overheads for even medium-sized
packets (the IP and TCP headers are each typically 20 bytes).
This would also limit adaptation by breaking a packet once
into fixed-sized sub-packets, thus committing the link to frag-
mentation policy on a coarse grain. For these reasons, we
implement packet shrinking through packet segmentation and
reassembly over thewireless link. This requires segmentation
and reassembly buffers on each host and some changes to the
packet headers: every DATA transmission adds to the packet
sequence number a starting byte offset, a byte count, and a
“packet complete” bit, while acknowledgements consist of a
packet sequence number and a cumulative length indicating
correctly received bytes. With these changes, data transac-
tions can be executed for variable-sized segments instead of
complete IP packets. Since we lack hardware FEC support,
our trace-based evaluation emulates the effect of FEC. The
effectiveness of Reed-Solomon coding is evaluated off-line
for each trace, and is applied at run time.

Second, the master tracks the quality of the wireless link,
feeding its own observations and error reports that slaves in-
clude in DATA-ACK packets to an adaptation policy module,
which determines an appropriate segment size and level of
FEC. It shrinks and encodes its POLL-DATA packets accord-
ingly, and includes the maximum segment size and minimal
FEC level in its POLL-DATA packets, so slaves can format
their packets appropriately.



6.3. Adaptation Policies

Given the mechanisms described above, a wide variety
of adaptive error control policies can be implemented. We
implemented and evaluated threefixed policies and four adap-
tive policies, similar to the ones presented in [11].

BOLD represents pure link-level local retransmission with-
out coding or shrinking: maximally-sized packets (5 255-
byte Reed-Solomon blocks) are sent with no error coding.

LIGHT transmits maximally-sized packets with 5% cod-
ing overhead. This is potentially a good policy since many
packets are not badly damaged (as we will see in Table 1).

ROBUSTattempts to excel in difficult conditions. It sends
minimally-sized packets (1 255-byte block) with nearly one
third of each devoted to coding overhead.

BIMODAL is a simple-minded adaptive policy. It behaves
exactly asBOLD when conditions are good, and asROBUST

when they are poor: if two consecutive packets are truncated
or corrupted, it sends small, heavily-coded packets until three
consecutive packets are not damaged.

BI-CODEis likeBIMODAL except that it adjusts only coding
overhead; BI-SIZE is like BIMODAL except that it adjusts only
packet size. BI-CODEandBI-SIZE are included in an attempt
to understand how much coding and packet sizing contribute
independently to the success ofBIMODAL .

FLEX adapts the packet size and degree of FEC redun-
dancy independently. Whenever two or more poll-response
transactions in a window of ten experience truncation,FLEX

reduces its estimate of the current safe packet size to 85%
of the post-truncation packet length. If three consecutive
transactions donotexperience truncation,FLEX begins to ex-
pand the safe packet size estimate, adding first 200 bytes,
then 400, then 800, until the estimate reaches the maximum
packet size. Whenever two or more transactions in a window
of ten experience a decoder failure,FLEX reduces its estimate
of the fraction of each Reed-Solomon block that can carry
user data by 15%. If three consecutive transactions donot
experience decoder failure,FLEX begins to expand the user
data share, adding first 10 bytes, then 20, then 40, until the
entire block carries user data.

A simulation-based evaluation [11] shows that the simple
adaptive packet shrinking and FEC policies significantly in-
crease the useful throughput of a wireless LAN, while the
fixed policies are effective only in some environments. The
key observation that allows adaptation is that, in a wireless
LAN, significant changes in the error environment are of-
ten caused by human actions, e.g., movement of a laptop or
turning on a cordless phone. However, the simulation neces-
sarily makes several simplifying assumptions and does does
not consider interactions with end-to-end protocols.

7. Trace-based evaluation of local error control

We present the results of operating the adaptive error con-
trol implementation described in the previous section in a va-
riety of trace-based emulated error environments. By doing
this, we hope to provide a more realistic evaluation of local
error control, investigate the importance ofadaptivecoding
and shrinking,and, finally, verify that retransmission, coding,
and shrinking can work together to provide an environment
suitable for TCP.

7.1. Error Traces
To characterize error environments, we monitored data

transfers between two identical DECpc 425SL laptops (25
MHz 80486) running NetBSD 1.1. For different tests, we
placed the PCs in different environments or added competing
radiation sources. Our laptops used PCMCIA WaveLAN[28]
interfaces operating in the902-928 MHz frequency band.

We instrumented our kernel device driver to collect all
packets (even runt packets and those that failed Ethernet
CRC) into an 8-megabyte kernel trace buffer. This allowed
collection of approximately 30 seconds of continuous net-
work activity. The traces were post-processed to yield, for
each transmission, a timestamp, the transmitted and received
packet lengths, signal information from the RF modem, a
packet sequence number, and a list of corrupted bits.

In this paper we will use traces that capture five differ-
ent error environments; their characteristics are summarized
in Table 1. The “office” scenario represents a best-case,
interference-free situation. In the “walking” scenario, inter-
ference is provided by a nearby cordless phone base station
and a cordless phone handset moving around the room at
walking speed. The “adjacent” case is similar but the hand-
set is nearby and power-cycled roughly twice per second
to produce a trace with challenging dynamicity. The “ta-
ble” case is a less-challenging desktop situation, again with
cordless phone interference. Finally, the “walls” case inves-
tigates attenuation due to distance, concrete block walls, and
classroom furniture. As compared to the interference envi-
ronments, attenuation has an almost insignificant truncation
rate, but has significant packet corruption. More details on
the traces and our trace methodology may be found in [11].

Finally, since the traces contain a richer set of events than
that used in our pattern-based evaluation, we must expand
the packet killer. On output or input, a truncation event
causes the killer to prefix the packet with a special flag that
includes the truncation length. The receiving machine’s LLC
layer will notice the flag, extract the truncation length, and
ignore the packet contents. This is conservative: we could
have examined erasure correction or extracting partial packet
contents. On output or input, a bit corruption event causes the
killer to prefix the packet with a special flag indicating the
minimum-strength Reed-Solomon code required to decode
the packet. The receiving machine’s LLC layer will compare



Trial Packets Bits Packet Non-lost Packet Non-truncated Packet Received-bit
Name Sent Received Loss Rate Truncation Rate Corruption Rate Error Rate

Office 5729 6� 107 0 0 3:4� 10�4 0
Walking 5729 6� 107 7� 10�4 9� 10�4 5:4� 10�2 1:6� 10�4

Adjacent 10487 6� 107 3:1� 10�1 2:3� 10�1 3:5� 10�3 1� 10�3

Table 5916 6� 107 5:4� 10�2 1:9� 10�2 9:4� 10�1 4:9� 10�3

Walls 5776 6� 107 6� 10�3 1:7� 10�2 2:7� 10�1 3:8� 10�4

Table 1. Summary of various error scenarios.

the killer event against the code the sender used to determine
whether to signal a decoder failure.

7.2. Evaluation of adaptive strategies

To evaluate the performance of a policy, we measured
the single-session TCP throughput across the link. In addi-
tion, we measured the throughput obtained by a program that
sprays UDP packets as fast as possible, ignoring send queue
overflows and losses, reporting only the number of packets
received. The policy performance results presented in Table 2
represent the averages of five 1-megabyte transfers, reported
in kilobytes per second.

The performance of the static policies is fairly predictable.
BOLD does very well in low-error situations because it doesn’t
spend any bandwidth on shrinking or coding overhead. Un-
fortunately, it is unable to transfer any data in the “table” case,
which has a packet corruption rate of 94%: TCP is actually
unable to complete its three-way handshake before timing
out. LIGHT fares slightly worse in low-error situations but
manages to achieve some minimal throughput in the harsh
“table” case. It dominates the other policies in the “walls”
scenario, in which 27% of the packets are corrupted, but only
lightly. ROBUST does poorly in essentially every case: in
addition to 30% overhead lost to coding, it loses substantial
throughput due to the high cost of sending small packets.

The adaptive policies all perform generally well, with the
exception ofBI-SIZE, which does not perform coding–like
BOLD, it cannot operate in the “table” case. Comparing the
three two-mode policies allows some evaluation of the util-
ity of packet shrinking. If we examine the performance of
BIMODAL and BI-CODE in the “table” case, which has 94%
corruption but only 2% truncation, we can verify that linking
packet shrinking to error coding level is probably counter-
productive, since at least in this case decoder failures are a
poor predictor of truncation and the performance reduction is
substantial. The case for shrinking is better made by compar-
ing the two policies in the “adjacent” case, which has almost
no corruption and 23% truncation. In this situation packet
shrinking provides a modest performance increase. Finally,
the FLEX policy, which can independently adjust shrinking
and coding, and can do so with finer granularity, does well
overall and particularly well in the “table” and “walls” cases.

7.3. Summary
The above results suggest that FEC coding can build on top

of local retransmission to further increase usable bandwidth
in interference and attenuation environments. Adaptation ap-
pears to be vital to achieve good performance in the variety
of error environments that a single mobile host will plausi-
bly encounter. Most importantly, Figure 13 indicates that,
regardless of adaptation policy, the resulting link was as us-
able by TCP as by loss-insensitive UDP: our adaptive error
control system is not causing TCP to lose performance due
to false triggering of its congestion avoidance mechanism.

8. Related work

Both the IS-54 TDMA system [23] and the Qualcomm
IS-95 CDMA [18] system provide link-level retransmissions
for packet data over digital cellular phone networks. The
AIRMAIL design [1] adds bit-, byte-, and packet-level adap-
tive forward error correction to yield a protocol for power-
and processing-constrained access devices. A WaveLAN-
based evaluation of packet shrinking [19] also suggests an
architecture including link-level fragmentation and adaptive
error coding. We believe that our pattern- and trace-based
evaluations provide support for this style of link-level er-
ror control mechanisms, which are independent of specific
transport protocols.

Several high-speed wireless LANs include both link-level
retransmission and packet fragmentation. The IBM Wire-
less RF LAN [4] performs fixed-size fragmentation primar-
ily to facilitate time scheduling and comply with frequency-
hopping dwell time limits. The IEEE 802.11 wireless LAN
standard [15] may optionally be configured to perform frag-
mentation into fixed-sized chunks, and retransmits packets a
(configurable) fixed number of times according to a length
threshold. Our experience suggests that the relatively small
default configuration constants may leave enough residual
errors to disturb TCP and that adaptive packet coding and
shrinking merit consideration.

Though the MACA [17] and MACAW [5] protocols are
designed for distributed multipleaccess rather than the cen-
tralized control our MAC employs, we believe that their ap-
proach to local retransmission is similar in spirit to ours. The
MACAW protocol design considers multipleflows per device
and presents evidence that a post-packet acknowledgement



Trace Bold Light Robust Bimodal Bi-code Bi-size Flex
TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Office 90.1 91.0 84.8 85.4 32.0 32.2 89.9 90.3 89.6 90.2 89.6 90.6 89.7 89.9
Walking 84.5 85.2 81.3 82.4 32.0 31.6 84.6 84.9 84.2 85.1 84.2 84.7 83.2 83.8
Adjacent 15.0 15.9 14.8 15.4 5.4 5.3 15.1 15.0 14.1 15.0 14.6 15.1 14.7 15.2
Table 0 0 5.4 5.4 19.3 19.2 12.8 12.6 37.9 37.9 0 0 45.8 46.2
Walls 64.6 65.9 75.8 77.2 30.2 29.8 64.1 64.9 64.7 65.7 64.9 65.6 72.6 72.9

Table 2. Performance of different error control policies: averages, in kilobytes/second, of five runs.
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Figure 13. Comparison of TCP and UDP throughputs for the experimental scenarios. The similarity
of these throughput figures indicates that TCP is not falsely assuming link congestion.

increased TCP throughput.
A comparison [3] among the Berkeley LL family of link-

layer retransmission protocols demonstrated a noticeable per-
formance enhancement obtained by filtering duplicate TCP
packets and acknowledgements. This implementation is spe-
cific to TCP and the general approach depends on trans-
port protocols generating frequent acknowledgements (as op-
posed to, e.g., periodic summaries). Our situation differs
from theirs in that our timeout interval is smaller by roughly
an order of magnitude and our retransmission scheme does
not re-order packets. This allows us to achieve good perfor-
mance without depending on TCP-specific protocol informa-
tion.

The behavior of TCP NewReno operating over wireless
fading links without link-level error control, including the
relationships between error burst patterns, fast recovery, and
timeouts, is studied in [8]. Interactions between link-level
and network-level error control are investigated in [31].

9. Conclusion

The primary contribution of this paper is a demonstra-
tion that “pure” link-layer local error control mechanisms
can greatly increase the efficiency of data transfer in wire-
less LANs. When designed correctly, these mechanisms can
mask the worst effects of the high and dynamic error rates
often found in wireless networks. Our experiments show that
non-snooping local retransmission can deliver vast improve-
ments in TCP performance over lossy wireless LAN links,
allowingTCP to use a high fraction of theavailable link band-
width. An analysis of our experimental results shows that, to
effectively support data transfers using TCP, local error con-
trol should meet the following conditions: it should be per-

sistent enough to virtually eliminate non-congestion losses,
should avoid packet reordering, and should not delay packets
beyond the typical TCP end-to-end retransmission timeout.
These conditions avoid false triggering of TCP’s end-to-end
error control mechanisms, such as congestion avoidance, fast
retransmission, and timeouts. Our experiments suggest that
violating the third condition may not be catastrophic, causing
only a modest duplication of effort.

While these conditions are partly driven by properties of
TCP’s error control mechanisms, they are not specific to TCP
itself. The local error recovery mechanisms do not depend on
TCP’s header format or acknowledgement generation rules,
but instead rely on high-level properties of the end-to-end
congestion avoidance and error control mechanisms, which
are regarded as appropriate for reliable byte stream transport
in general. Other flow types, such as delay-sensitive stream-
ing media, might prefer different error control policies, such
as reduced persistence. Flow-type-specific approaches are
attractive alternatives to protocol-specific approaches, and
can be supported based on flow information obtained from
type-of-service marking or RSVP-like protocols.

The above results were demonstrated using two local er-
ror control implementations. First we implemented a simple,
generally applicable design that uses only retransmission to
recover fromerrors. This allowed us to analyzeerror recovery
behavior and to identify conditions under which purely local
error recovery is effective. We then employed a more sophis-
ticated adaptive local error control implementation designed
for WaveLAN hardware that includes local retransmission,
adaptive packet shrinking, and FEC coding to address packet
loss, truncation, and corruption, respectively. Simple adap-
tation policies outperformed static policies across a range of



error environments while allowing effective end-to-end com-
munication using both TCP and UDP.
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