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Abstract

The service specification ss(P) of a protocol P de-
fines the services provided by the protocol and its pro-
tocol specification ps(P) specifies the rules of message
exchange to ensure the service. Protocol composition
has been advocated as an attractive way to design com-
plex protocols. Several techniques have been studied
for composition of protocol specifications. In these
techniques, to combine component protocols P and ()
to design R, ps(P) and ps(Q)) are first combined to ob-
tain ps(R) and then inference rules are used to derive
ss(R). In this paper, we explore an alternative strat-
egy in which we allow composition to be specified at
the service specification level (that is, ss(P) and ss(Q)
are first combined to obtain ss(R)). Given ss(R), we
provide an algorithm to mechanically combine ps(P)
and ps(Q) to generate ps(R) such that ps(R) satisfies
ss(R). We show that analysis of ss(R) is sufficient to
ensure that ps(R) satisfies certain safety and liveness
properties. This results in efficient validation as state
space of ss(R) is typically significantly smaller than
that of ps(R).

1 Introduction

The problem of designing a correct network protocol
is a challenging task and should be based on formal
engineering principles. A protocol can be viewed as a
service provider offering some communication services.
A protocol has a set of service access points (SAPs) via
which its services can be accessed. Each service access
point may have a set of actions (service primitives)
associated with it. Service specification and protocol
specification are two important stages of the protocol
engineering cycle. At the service specification stage,
the designer must specify the properties (services) to
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be provided by the protocol. The service specification,
ss(P), of a protocol P gives the possible sequences in
which actions at different SAPs may occur.

In the protocol specification stage, the protocol is
described as a set of communicating processes, one for
each SAP. The designer must specify details such as for-
mat of the messages, rules for message exchange, local
state maintained by each entity and properties of the
communication channels. Protocol validation is a part
of this stage to ensure that the protocol specification
meets the service specification. Protocol specifications
typically are much more complex than service speci-
fications due to factors such as lossy communication
channels, locality of the processes, etc.

The complexity of designing correct network proto-
cols has led researchers to propose compositional tech-
niques to design protocols. The main idea in these
techniques is to first design the protocols for the sub-
functions independently and then combine them in a
disciplined manner to obtain the composite protocol.
A number of techniques have been proposed for com-
position of protocol specifications such as sequential
composition alternative composition and parallel com-
position [1, 2, 8, 9, 10, 13, 14, 15, 16, 17].

Let P and @ be two component protocols used to de-
sign a composite protocol R. Each of these techniques
provide inference rules that ensure certain properties
of R by placing some restrictions on the component
protocols that can be combined. Since these restric-
tions are sufficient conditions, we can construct several
protocols from component protocols that do not satisfy
these restrictions. To increase the applicability of the
compositional techniques, such compositions must be
allowed. However, for such compositions, the inference
rules may not be applicable and therefore, we would
have to analyze the composite protocol specification
directly, whose state space may be very large.

To overcome this problem, we study composition at
the service specification level. We provide a framework



in which ss(R) can be obtained by specifying a set of
constraints on ss(P) and ss(()) where the constraints
specify how the services offered by P and @ have to
be combined. Given ss(R), we give an algorithm to
generate the protocol specification, ps(R), by combin-
ing ps(P) and ps(Q). In defining these compositions,
we do not impose any restrictions on the constraints.
This flexible use of constraints increases the applica-
bility of the composition techniques to allow a larger
set of protocols to be designed and composed. How-
ever, a designer may specify constraints that do not
result in the desired composite protocol (for example,
the resulting protocol may contain deadlocks). How-
ever, we show that the analysis of ss(R) is sufficient
to infer certain safety and liveness properties of ps(R).
This results in efficient verification as the state space
of ss(R) is typically significantly smaller than that of
ps(R).

We feel that defining composition of service specifi-
cation is more intuitive and useful as the main aim of
composition is to combine the services provided by P
and @ in a certain way. Composition at service specifi-
cation level also supports a building block approach to
protocol construction wherein a library of basic proto-
cols is made available. The library may consists of the
service specification and protocol specification of each
protocol. A designer can select a subset of protocols
from the library (depending on the services they pro-
vide) and specify how to combine their services. We
are currently building a software tool based on this
methodology.

2 Model

We define an extended finite state machine (EFSM)
X as a tuple < Sx,Ax,Fx,Mx,Vx,Tx,sx >, where
Sx is a set of states, Ax is a set of actions, Fx is a set
of terminal states, Mx is a set of messages that may
be sent or received, Vx is a set of variables and T'x is
a transition function Sx * Ax — Sx, and sx is the
initial state. Each action a in Ax has a boolean guard
en(a) associated with it which can refer to variables in
Vx (we will omit en(a) if it is identically true). A state
machine may be viewed as a directed labeled graph
where Sx forms the set of nodes, T'x defines the edges
and Ax defines the labels of the edges. We use Seq(X)
to denote the set of action sequences allowed by X.

We define a cross product operator x for P and @
as follows: G = P x @) is an EFSM such that Ag =
ApUAg, Vg =VpUVg, Mg = MpUMg, Fg = {(p,q) :

(p € Fp)A(q € FQ)}, Sa = {(p,9)l(p € SP)A(g € Sq)}
and s¢ = (sp, sg). The transition relation T consists

of tuples of the form (s1,¢, s2), where s1 = (ul,vl), s2
= (u2,v2) and s1,s2 € Sg. Tuple (s1,c,s2) € T iff:

ceApAc ¢ Ag, (ul,c,u2) € Tp and vl = v2,

c¢ ApAce€ Ag, (vl,c,v2) € Tg and ul = u2,

ce ApNAg, (ul,c,u2) € Tp and (vl,c,v2) € Tg.

A protocol has a set of service access points (SAPs)
associated with it. Each protocol P has a set of service
primitive actions s_act(P;) associated with SAPi. For
ease of presentation of definition in this section, we con-
sider protocols with two SAPs only (namely, SAP1 and
SAP2). We define s_act(P) = s_act(Py) U s_act(Ps).
The service specification ss(P) of a protocol P is
the cross product of a set of finite state machines
{li,l2,91,--.,9m}, where l; is the local specification at
SAPi and g; is a global service specification. The lo-
cal specification seq(l;) defines the possible sequences
in which actions at SAP¢ may occur and we require
that 4;, = s_act(P;) and V;, N'V;, = {}. The global
specification g; specifies the order in which actions at
different SAPs can occur. We do not allow variables
to appear in g; (therefore, V,, = ¢)!. We may omit
l; if the sequence of actions defined by [; can be de-
rived from the global specifications (that is, some g;
completely defines the possible ordering of actions at
SAPi). Figure 2 gives the service specification of a
connection establishment protocol Connectis. In this
protocol, the connection is initiated by site 1 (C' Req;2)
and site 2 may either accept it (CPosis) or reject it
(CNegi12). If the connection is established, site 1 can
disconnect using primitive D Req; 2.
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Figure 1: Connection Establishment Protocol: Service
specification
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The protocol specification, ps(P), is a tuple (P, P»),

IThis assumption has been made to simplify the presentation.
Variables in g; can be used as global variables in the service
specification and must be translated into local variables in the
protocol specification.



where P; is an EFSM for SAPi. P; may contain ac-
tions in addition to those associated with SAPi. Thus,
Ap, = s_act(P;) U A]. Each action a in A} may con-
tain local computation and send statements or a re-
ceive statement (we use —m to denote “send m” and
+m to denote “receive m”). Furthermore, each action
in s_act(P;) may be modified so that its computation
may include local computation and send statements.
Figure 2 gives the protocol specification for Connecti2
assuming reliable and FIFO channels.
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Figure 2: Connection Establishment Protocol: proto-
col specification

The global state of ps(P) is given by < w,v,z,y >,
where u (v) is the state of Py (P;) and = (y) is the se-
quence of messages in transit to Py (P,). In this paper,
we will assume that communication between processes
is asynchronous. The global state may change due to a
transition in either P, or P». If the global state changes
from S to S’ due to a transition labeled ¢ in either P;
or P, then we say that S’ is a successor state of S via
t. The sequence ex = S® —;, St —y, -+ —3¢, SFis
an execution of P if SY is the initial state and S is the
successor of S©°1 via t;. Let transition(ex) denote the
sequence t1;ta;...;t;. We say that ez’ is an extension
of ex via action sequence s = tgy1;...;tprm if ex’ =
ex —ry,, S —y ST A state w of P;is a
receiving state if all transitions incident from u involve
receiving a message. A state u is a final state if it has
no transitions incident from it. Let A denote an empty
sequence. A state pair (u,v) is stable if (u,v, A, ) is a
reachable global state and if (u,v,,z,y) is a reachable
state then z =y = A.

Definition 1: ps(P) is deadlock free if there does not
exist a reachable state (u,v,z,y) such that both u and
v are non-terminal states such that no transition is en-
abled from u and v.

Definition 2: ps(P) is free from unspecified recep-

tions if there does not exist a reachable state (u,v,x,y)
such that (a) first(z) = m and there is no enabled
transition incident from wu that receives m, or (b)
first(y) = m and there is no enabled transition from
v that receives m.

Definition 3: ss(P) is deadlock free if there does not
exist a non-terminal state s such that there is no en-
abled transition from s.

ps(P) is safe iff ps(P) is deadlock free and free from
unspecified receptions. ss(P) is safe iff ss(P) is dead-
lock free. We define proj(seq, A) as the sequence of
actions obtained by removing from seq all actions not
in A.

Definition 4: ps(P) satisfies ss(P) if:

1. for each sequence seq € Seg(ss(P)), there
exists an execution ex of ps(P) such that
proj(transition(ex), s_act(P)) = seq and if
seq;a € Seq(ss(P)) then there exists an exten-
sion ez’ of er via s;a, where s does not include
any action in s_act(P).

2. for  each  execution ex  of  ps(P),
proj(transition(ex), s_act(P)) € Seq(ss(P)) and
if there exists an extension ex’ of ex via s; a, where
s does not include any action in s_act(P) then
proj(transition(ex'), s_act(P)) € Seq(ss(P)).

3 Problem definition

Several techniques have been proposed for composi-

tion at the protocol specification level such as:

e sequential composition, that allows a multiphase
protocol to be constructed by composing protocols
for the individual phases in sequence [2, 1, 9, 17],

e alternative composition, that combines a set of
protocols such that at most one component proto-
col can be active at any given time [9, 16], and

e parallel composition, that allows protocols in
which multiple functions can be performed con-
currently to be constructed [8, 14, 15].

In [13], each of these techniques were studied for spec-
ifications involving timing information. Each of these
techniques can be viewed as imposing some constraints
on the combined execution of the component protocols.
These constraints may be based on actions or states of
the component protocols. For instance, the sequential
composition operator in [2] specifies a constraint that
@Q; cannot start executing until P; reaches a final state.
Similarly, constraints that inhibit execution of certain
actions in ) on the occurrence of a specific action in
P have been used in [9, 17] to define transition be-
tween protocols. However, to ensure the safety of the



composite protocol, each technique provides inference
rules that may restrict the actions or states that can
be used in specifying the constraints and also the type
of protocols that can be combined. For example, the
inference rule for sequential composition in [9, 17] re-
quires that the execution of () may start when P has
reached a stable state pair and that the set of stable
state pair satisfy a closure property. Finally, the infer-
ence rules in [14, 15] restrict the type of invariants and
liveness properties of the component protocols that can
be inferred in the composite protocol.

(b)

Figure 3: (a) Connection protocol, (b) Disconnection
protocol

We find these restrictions to be conservative in most
cases. Since they are not necessary conditions, one
might still be able to construct composite protocols
from a set of component protocols that do not satisfy
these conditions. To take full advantage of the compo-
sitional techniques, we must allow such compositions.
This would however require a more flexible use of con-
straints in defining compositions. The following exam-
ples illustrate these compositions:

Example 3.1: Figure 3 gives the protocol specifica-
tions of the connection and disconnection phases sepa-
rately. We may wish to combine these phases to obtain
the connection management protocol shown in Fig-
ure 2. To perform this composition, we must specify
that each execution of DRegi2 must be preceded by
an occurrence of C'Con fi». In addition, a new request
CReqy2 can be made only after DReq;2 has occurred.
This protocol cannot be designed directly using exist-
ing sequential composition techniques (it is possible
to derive it indirectly by first converting the compo-
nent protocols to non-iterative versions and combining
them). m|

Example 3.2: Consider the protocol, Connectis,

shown in Figure 2 in which site 1 establishes a con-
nection with site 2. We can obtain a similar proto-
col Connecty; in which site 2 establishes a connection
with site 1. Consider the alternative composition of
these two protocols in which connection can only be
established in one direction at a time. If both attempt
to establish a connection at the same time, Connectio
is given priority (thus, in Connecti2, we want a pos-
itive response, C'Posia, to be generated whereas in
Connects1, we want a negative response, CNego1 to
be generated). This can be accomplished by imposing
a constraint that if site 1 has sent a request to site 2
(CReqi2), then site 1 is not allowed to execute C'Posa; .
Only after the occurrence of CReji2 or DReqyo (which
marks the termination of the connection from site 1
to site 2), CPosy; is allowed to execute. Similar re-
strictions have to be placed for other cases. This is an
example of a constraint that allow temporary inhibi-
tion of actions in one protocol on the occurrence of an
action in the other protocol. O

In the full paper, we also give an example to illustrate
the flexible use of constraints in the context of paral-
lel composition. These examples illustrate the need for
more flexibility in specifying constraints than allowed
by the existing techniques. [8] proposes a similar ap-
proach in which constraints are defined by strengthen-
ing guards in one protocol using proposition involving
variables of the other protocol. However, it is possible
that if we allow constraints to be imposed in an arbi-
trary manner, it may lead to deadlocks or other un-
desirable behavior in the composite protocol. Hence,
protocols constructed using such an approach would
have to be analyzed directly. Since the state space of a
composite protocol is typically large, this analysis will
be expensive.

In this paper, we discuss an alternative approach in
which composition is performed at the service spec-
ification level. In defining these compositions, we
do not impose any restrictions in defining the con-
straints. Although the protocol specifications are com-
plicated (many times due to message loss, timeouts,
etc), the service specifications are relatively much sim-
pler. Thus, even though we allow arbitrary composi-
tions of service specifications, we can analyze them as
their state space is not very large.

More formally, the contributions can be stated as
follows: Assume that we are given ss(P), ss(Q), ps(P)
and ps(Q) such that ps(P) satisfies ss(P) and ps(Q)
satisfies ss(P). We give a constraint based method-
ology to combine service specifications of P and Q.
Thus, if R is the composite protocol, then ss(R) is
given by ss(P) x ss(Q) subject to a set of constraints



SC. Given this composition, we give an algorithm to
construct ps(R) from ps(P), ps(Q) and SC. We show
that if ss(R) is safe, then we can conclude that ps(R)
is safe and satisfies ss(R). Thus, the technique avoids
the analysis of ps(R).

In performing compositions of service specifications,
we can only impose constraints on actions belonging
to s_act(P) and s_act(Q) (thus, we cannot impose con-
straints on sending and receiving actions). However, we
find that in most cases, imposing constraints on service
primitives is not a stringent restriction as the main aim
of protocol composition is to combine the services of P
and @ in a certain manner. This combination can be
defined in a more intuitive and clear manner at the
service specification level.

There has been significant amount of work in the
area of synthesizing protocol specifications from service
specifications [3, 6, 12]. In some techniques, service
specifications have been structured using composition
operators and algorithms to implement these operators
at the protocol specification level have been provided.
We defer the detailed comparison to these synthesis
techniques after the presentation of our approach.

4 Composition of service specifications

In this section, we discuss our framework for com-
position of service specifications. We first present a
basic set of constraints to illustrate the technique.
More complex constraints can be added to the frame-
work, some of which are discussed subsequently. Given
two service specifications, ss(P) and ss(Q), we define
their composite specification using a set of constraints.
Let ss(R) = ss(P) x ss(Q). Then, the constraints
are imposed on the set of executions of ss(R). Let
ex = 8% —, ST —y, -+ —¢,, SF be an execution
sequence of R, where S is the initial state of ss(R).
Let I, and I, be the number of occurrences of a and b
in ex, respectively.

1. The synchronizing constraint is specified as
synch(a,b), where a € s_act(P;) and b € s_act(Q;)
(both actions must belong to the same SAP). Con-
straint synch(a, b) requires that if a or b occurs in
ex, then except for the last occurrence of a or b
when [, # [, the execution of @ and b in ex be
delayed until a and b are enabled and then both
are executed in either order but atomically, i.e., no
other action at site ¢ can be interleaved between
the execution of a and b.

2. The ordering constraint is specified as
order(A, B), where A, B C s_act(P;) U s_act(Q;).

Constraint order(A, B) requires that the execu-
tion of actions in A and B must alternate and the
first action in B cannot occur until an action in A
occurs.

3. The interrupt constraint is specified as
interrupt(A, B,C), where A,C C s_act(P;) and
B C s_act(Q;). Constraint interrupt(A, B,C) re-
quires that after the occurrence of any action in A,
an action in B cannot be executed until an action
in C occurs. The interrupt constraint in which
A,C C s.act(Q;) and B C s_act(P;) is defined
similarly.

4. The enabling constraint is specified as
enable(A, Q;), where A C s_act(P;). Constraint
enable(A, Q;) requires that @; can begin execu-
tion only after the occurrence of an action in A.
The constraint enable(B, P;) is defined similarly.

Given a set of constraints SC, the service specifi-
cation of the composite protocol R is a state machine
whose executions are those of ss(P) x ss(Q) that sat-
isfy SC. The set of constraints discussed above only
restrict the set of executions of ss(P) x ss(Q) (each
constraint either delays the execution of an action or
limits the choice of actions available in a state). Hence,
we have the following lemma (the proof of the lemma
is straightforward).

Lemma 4.1 If ss(R) is deadlock free then for any ex-
ecution sequence ex € Seq(ss(R)), proj(ex,act(P)) €

Seq(ss(P)) and proj(ezx,act(Q)) € Seq(ss(Q)).

Although we can explicitly construct ss(R) to per-
form its analysis, we use an alternative approach. To
perform analysis of ss(R), we have implemented an
algorithm that performs reachability analysis by tak-
ing ss(P), ss(Q) and SC as input. These constraints
are enforced during the generation of the state space.
Thus, the composite state machine for ss(R) is gen-
erated on-the-fly. For each constraint, the algorithm
keeps track of appropriate state information (for in-
stance, for the constraint enable(A, Q;), it keeps track
of whether an action of A has already occurred and
allows execution of an action in @); only if this condi-
tion holds). At present, the algorithm is able to detect
deadlocks and verify invariants.

In the following, we give examples of compositions of
protocols (in specifying the constraints, for simplicity,
a singleton set {a} will be written as a):

Example 4.1: We can combine ss(Connect) and
ss(Disconnect) of Example 3.1 using the following
constraints: We have to specify that iterations of
Connect and Disconnect must alternate. The con-
straint order(CCon fi2, DReqis) ensures that the z'"



iteration of Disconnect is initiated only after the zt"
establishment of the connection. We also need to spec-
ify order(C Reqi2, DReqi2) to ensure that the zt? con-
nection request can be generated only after the termi-
nation of x — 1%¢ iteration of Disconnect. However,
this constraint results in a deadlock. We must im-
pose the constraint order(C Reqi2, {DReqi2, CReji2})
instead as each connection request may not result in a
connection establishment. |

Example 4.2: Consider the composition of the
protocol Connect;s and Connecty; as discussed in
Ex-

ample 3.2. The constraint interrupt(C Reqi2, C Poss;,
{DReq12,CReji2}) specifies that after site 1 has re-
quested connection to site 2, site 1 cannot accept the
connection request from 2 until the connection from
site 1 to site 2 is either terminated or denied. Sim-
ilarly, interrupt(CIndsi, C Reqia,{CNegs1, DInds })
specifies that if site 1 has already received a con-
nection request from site 2, then site 1 cannot send
a connection request to site 2 until the connec-
tion from site 2 to site 1 is terminated or denied.
interrupt(CInd2, CResa, {CNegi2, DIndi2}) speci-
fies a similar constraint for the opposite direction.
These constraints result in a deadlock free service spec-
ification that has the desired properties. O

Example 4.3: In many complex protocols such as
those for multimedia collaboration, several sessions
may have to be established. Each session may be con-
trolled by a separate connection management proto-
col. These protocols could have been designed inde-
pendently and may have different rules for connection
establishment and disconnection. Composing such pro-
tocols can be a non-trivial task as these sessions may
interact with one another in a complex manner. Spec-
ifying these interactions require the type of constraints
that we have proposed. In the full paper, we design a
multimedia protocol by composing protocols to man-
aging a control session, an audio session and a text
session. We show how constraints can lead to dead-
locks in the composite session management protocol.
O

Example 4.4: Consider the sequential composition of
the protocols in Figure 4. Sequential composition of P
and @ implies that at each site, all actions of P must
precede any action of (). However, for the specification
in Figure 4, we cannot define ps(R;) as ps(FP;); ps(Q;)
(after reaching state 4, P; cannot switch to @1 because
it does not know whether m2 will arrive or not). On
the other hand, we can define ss(R;) as ss(P;); ss(Q;)
using the enabling constraints enable({4, B}, Q1) and
enable({C, D}, @2) (as discussed in the algorithm later,

A +m2 m \ sl | E +m3
+m2 |
3 -m3 E

Figure 4: Sequential composition of protocols

this sequential execution of ss(R) is not translated
into a sequential execution at the protocol specifica-
tion level). This example illustrates the case where ex-
isting composition operators cannot be applied to the
protocol specifications but are applicable to the corre-
sponding service specifications. |

5 Composition of protocol specifica-
tions

In this section, we give an algorithm to combine
ps(P) and ps(Q) to obtain ps(R) using the set of con-
straints SC specified at the service specification level.
When combining P; and @;, we require that the send
and receive statements from P; and @); operate on the
same set of input channels and output channels of R;.
Without loss of generality, we have the following two
assumptions regarding communications in R: (1) The
message sets of P; and @Q; are disjoint; and (2) The
bound on a channel in R is the sum of the bounds
on the same channel in P and (). We further assume
that the local variable sets of P; and @); are disjoint.
Finally, an action a € act(P) may appear as a label
in more than one transition in ss(P) or ps(P). We
assume that a constraint on a refers to all transitions
with label a.

Due to property shown in Lemma 4.1, the enforce-
ment of the constraints at the protocol specification
level is simple. The algorithm involves three steps. The
first step introduces new variables and states for each
constraint. The next step transforms P; and @; by
adding new conjuncts and/or local statements to their
respective transitions.

Step 1:
e If synch(a,b) € SC, then add variable syn,, with



possible values (0, 1,2) and with initial value 0.

e If order(A, B) € SC, then add a boolean variable
ordap with initial value false.

e If interrupt(A, B,C) € SC, then we add a new
variable inh4pc with initial value false.

e If enable(A,Q;) € SC, then we add a new variable
enbg, with initial value false.

In addition, we introduce a variable synch; for each
site <.

Step 2: We modify each action in P; and @); by adding
conjunct(s) and/or local statement(s) to its enabling
condition and computation. Specifically, for each a €
Ap,, we do the following:

1. if a is not involved in a synchronization constraint
then add —synch; to en(a) as a conjunct.

2. synch(a,b) € SC. Then for a, add (synch; A
syng = 2) V (msynch;) and en(b) as conjuncts
to en(a) and add statement:

“if syngp = 0 then syngp := 1; synch; = true else
synqp := 0; synch; = false”

to its computation. For b, add (synch; A syngs =
1)V (=synch;) and en(a) as conjuncts to en(b) and
add statement

“if synqp = 0 then syngp := 2; synch; = true else
syngp == 0; synch; = false”

to its computation.

3. order(A,B) € SC. Then for all a € A, add
conjunct —ordap to en(a) and add statement
“ordap := true” to its computation. For all
b € B, add conjunct ordap to en(b) and add state-
ment “ordap := false” to its computation. A
similar action is taken if order(B, A) € C.

4. interrupt(A, B,C) € SC. Then, for alla € A, add
the statement “inhapc := true”. For all ¢ € C,
add the statement “inhapc := false”. For all
b € B, add ~inhapc as conjunct to en(b).

5. enable(A,Q;) € SC. Then, for all a € A, add the
statement “enbg, := true”. For all actions b €
s_act(Q;) such that b is reachable from the initial
state via a sequence of send or receive statements,
add enbg, as conjunct to en(b).

Step 3: We compute R, = P; x Q; (note that P; is dif-
ferent from the original one. For notational simplicity,
we still denote it as P; instead of P]. The same remark
applies to @;). Each state in R} is of the form u.v where
u is a state of P; and v is a state of );. We construct
R; from R} by removing the following transitions: Let
synch(a,b) € SC. Let head(a) (tail(a)) be the set of
states in P; with transitions labeled a incident from
(to) them. head(b) and tail(b) are defined similarly.
Then, we remove all transitions from R} labeled a ex-
cept those incident from states of the form u.v, where

u € head(a) and v € head(b) U tail(b). Similarly, we
remove all transitions from R; labeled b except those
incident from states of the form u.v, where v € head(b)
and u € head(a) U tail(a).

Lemma 5.1 Let ss(R) be a specification obtained by
composing ss(P) and ss(Q) using a set SC of con-
straints, and ps(R) be obtained from ps(P), ps(Q) and
SC wusing our algorithm. Then, ps(R) is safe and sat-
isfies ss(R) if

o ps(P) satisfies ss(P) and ps(Q) satisfies ss(Q)

e ps(P) and ps(Q) are safe

e ss(R) is deadlock free.

Lemma 5.1 allows us to infer properties of ps(R) by
analyzing ss(R). In particular, we can infer that ps(R)
is deadlock free by analyzing ss(R). In the examples
discussed earlier, the analysis of the composite pro-
tocol specification for deadlock freedom directly would
require a much larger state space search as compared to
the analysis of the service specification (especially if the
protocol specifications are designed under assumptions
of message loss or reordering etc). Another advantage
is that we can derive safety and liveness properties of
ps(R) by analyzing ss(R) since ps(R) satisfies ss(R).

6 Extensions of the framework

In this section, we discuss several ways in which our
framework can be extended:

e Alternative composition: A protocol designed us-
ing alternative composition of P and @ provides the
functionality of either P or @), one at a time. Sev-
eral different semantics of alternative composition have
been studied in the literature. For example, consider
the composition of Connectis and Connects; of Ex-
ample 3.2. Consider the case in which both protocols
attempt to establish a connection at the same time.
In the composition discussed in Example 3.2, we as-
sign priority to Connectis so that if a request is made
in this protocol, a concurrent request by Connecta;
can either be denied (by CNegsi) or withheld until
the connection in Connects terminates. Other type of
compositions have been discussed in which both pro-
tocols are denied the request [13] or only one of them
is denied by assinging priorities [9]. In these composi-
tions [9, 13], if a protocol is denied the connection, its
execution is “aborted” and restarted from the initial
state at a later time. The notion of “aborting” intro-
duces new executions in the composite protocol (if @
is aborted then there may exist a partial execution of
@) and hence, Lemma 4.1 is not satisfied. To ensure



the safety of the composite protocol, the abort actions
must be performed in a disciplined manner (for exam-
ple, in [9], if P; can abort @;, then @; is aborted on
the initiation of P; and before it receives any response
from its peer process). In our framework, we can in-
troduce a new constraint of the form abort(a,Q;,b),
where a,b € s_act(P;), such that @; is aborted on the
occurrence of (); and is reset to its initial state on the
occurrence of b. Such a constraint can not only model
the alternative composition but other types of compo-
sitions in which, for instance, P and @) may initially ex-
ecute concurrently and if certain actions occur in P, Q)
is aborted. The implementation of the abort constraint
at the protocol specification level requires introduction
of new messages and new states. In particular, on the
execution of a, a special message Abort is sent to @Q;
and @Q; enters a special abort state. In this state, it
discards all message it may receive from ();. Process
(); responds with an Abort_ack message on receiving
the Abort message.

e Conditional and state-based constraints: At
present, our framework allows specification of con-
straints on actions only. In some cases, we may want
to use a combination of states and actions to specify
constraints. For instance, we may want to specify that
a constraint between actions be imposed only when the
protocol is in a specific state. As another example, we
may want to specify that an action a in P; be enabled
only when (); has reached a specific state. In the full
paper, we discuss the incorporation of these constraints
in our framework.

e Shared Actions, Global Variables and Timing
Information: Our framework currently assumes that
the actions and variables of P and @ are disjoint. In
some cases, we may want to allow ss(P) and ss(Q)
to share actions and variables. We can incorporate
this feature in our framework with the following pro-
visions: If a € s_act(P) and b € s_act(Q) are shared
then synch(a,b) € SC. This restriction is similar to
the one in [14] where we studied sharing of actions and
variables at the protocol specification level.

We also assume that an EFSM for a global specification
does not include variables. Allowing variables in the
global specification is advantageous as it allows very
high-level specifications. Incorporating global variables
is a subject of future research (the main problem en-
countered is that with global variables, an action in
ss(P) may be broken into several actions in ps(P), and
therefore, there may not exist a one-to-one correspon-
dence between actions in ss(P) and ps(P)). Finally,
we would like to extend our work to include timed ex-
tended finite state machines. In [13], the problem of

composing timed specifications at the protocol speci-
fication level has been studied. As in techniques for
non-timed specifications, some restrictions have been
placed to ensure safe compositions. For example, if
synch(a,b) € SC then [13] requires the time interval
associated with a and b to be [0,00]. We believe that
by studying composition of timed specifications at the
service specification level, we can weaken such restric-
tions.

7 Related Work

Protocol composition operators have been studied
extensively in the literature. In particular, Lotos pro-
vides enabling, disabling and choice operators that can
be used to combine service specifications [5]. For ex-
ample, the enabling operator, P >> (), specifies that
after the completion of P, () must be enabled (this re-
quires actions at all SAPs in P to precede all actions
in Q). [18] proposed the idea of “specification engi-
neering” which advocates more flexibility in combining
specifications. In [18], a number of extensions of Lotos
operators were proposed. For instance, consider the
Lotos process A = A_Req; A_Ind; A_Res; A.Conf.
To use the enabling operator to specify that pro-
cess B is enabled after the occurrence of A_Regq,
we have to decompose A into two subprocesses:
Al = A Req and A2 = A_Ind;A_Res;AConf.
To overcome this problem, [18] defined opera-
tors such as enables_after_ack, enables_after_try,
interrupts_after_ack, interrupts_after _try,
interleaves, alternate, overtakes, etc.  For ex-
ample, enables_after_try(A, B) specifies that service
B_Req; B_Ind; B_Res; B_Conf can be enabled after
action AReq has occurred (this action represents the
fact that A has attempted to provide the service). The
work in [18] share the same goals as our approach of
providing more flexibility in combining services. We
find that several of the operators in [18] can be speci-
fied using constraints in our framework.

A number of algorithms to synthesize protocol speci-
fications from service specifications have been proposed
[3, 6, 4, 5]. Using this approach, ss(R) can be first de-
rived from ss(P) and ss(Q)) and then ps(R) can be de-
rived from ss(R) using a synthesis algorithm. Our work
differs in two respects. First, the synthesis algorithms
have been proposed for a fixed set of operators. For ex-
ample, [4] considers the enabling, disabling and choice
operators of Lotos. Similarly, [12] discussed sequen-
tial, iterative and alternative composition operators for
combine service specifications in the FSM model. The
motivation of our work is to allow more flexible com-



positions than those allowed by such operators. It may
be possible to encode some of the constraints using
Lotos expressions (which can be composed in parallel
with ss(P) and ss(Q)). However, this may require ex-
tensive decomposition of ss(P) and ss(@) into smaller
expressions. Second, our framework allows the use of
any protocol specification ps(P) that satisfies ss(P).
In particular, we can use manually designed protocol
specifications that may be more efficient. The synthesis
approach derives a protocol specification from the com-
posite service specification, and are therefore restricted
to only those protocols that can be synthesized (the
proposed algorithms typically place restrictions on the
service specification that can be translated into proto-
col specification).

Another approach is the refinement methodology
proposed in [11, 7]. In this approach, one starts with a
high-level specification A that is refined in a stepwise
manner to a more detailed specification refined(A),
such that refined(A) satisfies A. This approach can
be used to refine ss(P) to ss(R). In [11], specifica-
tions are given as I'/O automata and a parallel com-
position operator (||) is defined, where A || B is an
I/0 automata in which A and B are synchronized on
common actions. It is shown that A || B satisfies
refined(A) || refined(B). We believe that the I/0O
automata model can be extended to include composi-
tion using constraints (in addition to synchronization)
discussed in our framework.

8 Conclusion

Protocol composition has been advocated as an at-
tractive way to design complex protocols. Several tech-
niques have been studied to perform composition at the
protocol specification level. In this paper, we studied
the problem of combining protocols at the service spec-
ification level. The composition of ss(P) and ss(Q) is
defined with respect to a set of constraints. These con-
straints provide a very flexible approach to combine
protocols. Given the composite service specification
ss(R), we provided an algorithm to derive ps(R) from
ps(P) and ps(Q)). We show that analysis of ss(R) is
sufficient to ensure that ps(R) satisfies certain safety
and liveness properties. This results in efficient vali-
dation as state space of ss(R) is typically significantly
smaller than that of ps(R).
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