Selective Total-Ordering Group Communication
on Single High-Speed Channel

Takayuki Tachikawa and Makoto Takizawa
Dept. of Computers and Systems Engineering
Tokyo Denki University
Ishizaka, Hatoyama, Hiki-gun, Saitama 350-03, JAPAN
e-mail {tachi, taki}@takilab.k.dendai.ac.jp

Abstract

In the group communication, multiple processes
have to receive messages in some order. In this paper,
we discuss a group communication protocol which sup-
ports a selective total-ordered (ST) and atomic deliv-
ery of messages to the destinations in a group of pro-
cesses interconnected by a high-speed channel, where
the processes may fail to receive messages due to the
buffer overruns. That is, each process receives mes-
sages destined to it in the sending order and any two
common destinations of messages are received in the
same order. Its ezecution is controlled in a distributed
scheme, i.e. no master controller.

1 Introduction

In distributed applications like groupware [6], group
communication among multiple processes is required
in addition to conventional one-to-one communication
provided by OSI [8] and TCP/IP [5]. In the group
communication, messages sent by one process have to
be delivered to either all the destinations or none in
the group, i.e. atomic delivery. In addition, each pro-
cess has to receive messages sent by the processes in
some order. Group communications have been studied
in (3, 4], [7], 9], [11, 12], [13]-[16], and [17]-[21]. [17]
presents a reliable broadcast protocol which uses the
one-to-one communication. An important problem in
the group communication is which process coordinates
the cooperation of multiple processes in the group.
Most approaches [4, 7, 17] adopt the centralized con-
trol scheme, where one master process decides on the
atomic and ordered delivery of messages. ISIS [3] uses
a decentralized one where a sender of each message
controls it. We adopt the distributed approach where
every process makes a decision on it by itself. [18]-[21]
present the distributed protocols.

Let us consider a group D composed of clients C;
and C; and database servers S;, Sz, and S3 where
data object z is stored in S; and Sj, and y is stored in
S; and S3. Suppose that C; would write z and y, and
C, would write only z. C; sends a write operation op,
to Si, Sz, and S3, and C; sends write op; to S; and
S3. Thus, each process sends each message to any sub-
set of the group at any time. [13] discusses a selective
order-preserving (SP) protocol where each server re-
ceives operations from each client in the sending order

0-8186-6685-4/94 $4.00 © 1994 IEEE

212

while S; may receive op; after op; and S; may receive
op; before op;. If S; and S3 could receive op; and
op, in the same order, it is easy to realize the serializ-
ability [2]. It is a selective total-ordering (ST) service
where every common destinations of messages receive
the messages in the same order. In this paper, we
discuss a distributed protocol which provides the ST
service for the group by using the high-speed network
[1] where each process may fail to receive messages
due to the buffer overrun. In addition, every process
can send messages asynchronously. In ISIS[3], each
message p is sent to a pre-defined group and all the
processes in the group receive p. The processes in the
intersection of multiple groups can receive messages
in the ST order. In the ST protocol, each process can
send messages to any subset of the group at any time.

In section 2, we model broadcast communication
services. In section 3, we present a data transmission
procedure. In section 4, failure recovery mechanisms
are discussed. Finally, we discuss the evaluation of the
ST protocol in section 5.

2 Service Model

2.1 Service properties

A communication system is composed of applica-
tion, system, and network layers [Figure 1]. A cluster
C [18, 19] is a set of n (> 2) system service access
points (SAPs), i.e. {S,...,5,}. Each application pro-
cess A; takes group communication service through S;
which is supported by a system process E; (i = 1,...,n).
E,,...,E, cooperate with each other to support the
group communication service for C by using the net-
work layer. C is referred to as supported by Ei,...,E,
(C= <E1’W’En)2x and support Ai,...,A,. The network
layer supports the system layer with high-speed data
transmission. Since the transmission speed is faster
than the processing speed of E;, E; may fail to receive
messages sent in the network layer. In this paper, we
assume that each E; loses the whole message if E; fails
to receive it, i.e. unconditional loss.

Let T; denote a process at some layer. The under-
lying service used by T; is modeled as a set of logs. A
log L is a sequence of messages < pj ... P, |, where
p1 and p,, are the top (top(L)) and the last (la.st(L)g,
respectively. p;, precedes py (pn —r pi) in L if h < k.
Each T; has a sending log SL; and a receipt log RL;,

apph'ca.tionl

-

o (4,) RBEGRYe

layer 'S5 'S ' S
- <O <X ayatem
1 : + SyA.P
system @ . system
layer process
N. N; N,
S A~
network N
layer high-speed network geAtlv)vork

Figure 1: Layers

which are sequences of messages sent and received by
E;, respectively.

RL; is order-preserved iff p —pp, g if p —sr; ¢
for some E;. RL; is information-preserved iff RL; in-
cludes all the messages in SLy,...,SL,. RL; is preserved
iff RL; is order- and information-preserved. RL; and
RL; are order-equivalent iff for every pair of p and ¢
in {Joth RL, and RLJ, P —RL; ¢ lﬁp —RL; ¢- RL‘
and RL; are information-eguivalent iff they include
the same messages. RL; and RL; are equivalent iff
they are order- and information-equivalent.

In a high-speed network, system processes may fail
to receive messages due to the buffer overrun because
the transmission speed is faster than the processing
speed [1]. A one-channel (1C) service is a model
of the high-speed network where every RL; is order-
equivalent. Figure 2 shows an example of the 1C ser-
vice for C = (T}, Ty, T3) where all the processes re-
ceive messages in the same order while RL; and RL3
are not information-preserved because T; and T3 fail
to receive ¢ and ¢, respectively.

RL;: <azbecpydzgq] SLi: <abecd]
RLy: <azbpydzg SLy: <pgq]
RLy: <azbepyd:z SLy: <zyz]

Figure 2: 1C service

An order-preserving (OP) service is one where ev-
ery RL; is preserved. A total ordering (TO) service is
an OP one where every RL; is order-equivalent. In the
OP service, every T; receives messages from each T;
in the sending order without message loss. Every T}
receives messages in the same order in the TO service.
2.2 Selective broadcast service

In a cluster C supporting application processes
Ay, ..., A,, each A; sends a message to the des-
tinations (not necessarily all the processes) in C.
RL; is selectively information-preserved iff RL; in-
cludes all the messages sent to E;. RL; is selectively
preserved iff RL; is order-preserved and selectively
information-preserved. A selective broadcast (SB) ser-
vice is one where every RL; is selectively information-
preserved.

213

RLyi: <czzp)
RL;: <zagby
RLz3: <azczyg

RLi: <zcpz]
RL3: <azbygqg
RL3: <azczg

(b) ST service
SLy: < ag,3) bay ca,3y]

SLy: < Py 942,3)]
SLa: < T{1,2,3) Y{2} %{1,3}]

(a) SP service

Figure 3: SP and ST services

[Definition] An SB service S is selectively order-
preserving (SP) iff every RL; is selectively preserved.
S is selectively total ordering (ST) iff every RL; is
selectively preserved and is order-equivalent. O

Here, every RL; in the ST service is referred to as
selectively totally ordered. Let p.DST (C C) be a set
of destination application processes {44, ,...,44,,} of
p. Here, p can be written as pg,, .. 4,.}- P denotes
that p is sent by A;. In the SP service[13], if p —gr;
g, p —Rr, q for every A; € p.DST N q.DST. For pand
q sent by different processes, p is sent by A; and ¢ is
sent by A; (i # j), every pair of Ay and Ay in p.DST
N ¢.DST receive both p and ¢ in the same order in
the ST service. For example, a(s 3} and T(;;3) are
received by the common destinations Az and Az in
the same order in Figure 3(b).

A logical precedence relation (=) among p and g is
defined as follows.

[Definition] p logically precedes q (p = ¢) iff (1)
p —sr; ¢ and p.DST N ¢.DST # ¢, or p —RL; ¢
for some E;, (2) p = g, or (3) for some message ,
p=>r=gq.0

= is reflexive and transitive. Since £ => cfroms —py,
cand ¢ = z from ¢ —pgz, z in Figure 3(b), z = 2. If
= is anti-symmetric, = is consistent. Otherwise, =
is inconsistent. = is complete iff either p = g or ¢ =
pif p.DST N q.DST # ¢ for every p and ¢. In the ST
service, = has to be consistent and complete.

2.3 Distributed atomic receipt

In this paper, we adopt the distributed control
scheme to realize the atomic receipt of each message p
among all the destinations in the system cluster C =
(E1, ..., Bn). There are three criteria levels [18, 19] by
which each F; decides whether to atomically receive p
from E} in C:

(1)
(2)

(3)

Acceptance: E; receives p.

Pre-acknowledgment: E; knows that every desti-
nation of p has accepted p.

Acknowledgment: E; knows that p has been pre-
acknowledged by every destination of p.

Even if E; pre-acknowledges p, another E; may think
that some E} has not accepted p because E; fails
to receive the acceptance confirmation of p from Ej.
Hence, the third level is required.

3 ST Protocol

We would like to discuss a data transmission pro-
cedure of the ST protocol for a cluster C = (F,...,Ey,)
by using the 1C service.

3.1 Variables

There are two kinds of messages, i.e. DT &data)
and RR (receive ready) ones. DT is used to send data
in C. If E; has no data, E; transmits RR to all the
processes every pre-defined period. Each DT message
p has the following fields (j = 1,...,n):

e p.SRC = source process E; which transmits p.

e p.DST = get of destination processes of p.

e p.TSEQ = total sequence number of p.

e p.PSEQ; = partial sequence number for E;

e pACK; = TSEQ of a message which E; expects
to receive next from E;

¢ p.BUF = number of buffers available in E;.

o p.DATA = data.

E; € p.DST means that E; is a destination of p. For
every pair of p and ¢ from E;, p. TSEQ < ¢q.TSEQ if
p —sr; - If E; € p.DST N q.DST and p —5sy; ¢,
p.PSEQ; < q.PSEQ;.Ifp -5, ¢, E; ¢ p.DST, and
there is no message r such that p —gr, r —sr; ¢ and
E; € r.DST, then p.PSEQ; = ¢.PSEQ;. p.ACK;
informs every process in C that E; has accepted every
message ¢ from E; where ¢.TSEQ < p.ACK;. RR has
the same fields as DT except that RR does not have
DST and DATA fields because RR is sent to all the
processes in C without data.
Each E; has the following variables (j = 1,...,n):

e TSEQ = total sequence number of a message
which E; expects to broadcast next.

e PSEQ; = partial sequence number of a message
which E; expects to send to E; next.

e TREQ; = TSEQ of message which E; expects to
receive next from E;.

e PREQ; = PSEQ); of message which E; expects
to receive next from E;.

e ALy; = TSEQ of message which E; knows that
E; expects to receive next from Ej, (h = 1,...,n).

e PAL,; = TSEQ of message which E; knows that
E; expects to pre-acknowledge next from Ej (h
= 1,..n).

e BUF; = number of buffers in E; which E; knows.

E; obtains initial TSEQ, PSEQ;, and BUF; for
every E; in the cluster establishment [18, 19]. Let
minAL; and minBUF denote minimum ones in
ALjy,...,AL;p, and in BUF,,...,BUF,, respectively. E;
has a sending log SL; and three receipt logs RRL;,
PRL;, and ARL; to store messages accepted, pre-
acknowledged, and acknowledged, respectively.
3.2 Transmission and acceptance

E; transmits a message p by the following action.
Here, W gives the window size and H (> W) is a
constant.

214

Transmission action]
if mindL; < TSEQ <
minAL; + min(W, minBUF [(H x
p.TSEQ := TSEQ: TSEQ := TSEQ
for (j = 1,..,n) {
if (B} is a destination of p) {
PSEQ, := PSEQ; + 1;
p.DST :=p.DSTU{ E; };}

n)) {
+ 4

}
p.ACK) := TREQ, (h = 1,..,n);
p is broadcast at the network SAP N;.} O

On receipt of p from E;, E; performs the following
ACC action.

Acceptance (ACC) action]
if (1) p.TSEQ = TREQ, or (2) p.PSEQ; = PREQ);
and E; € p.DST, {
TREQ; '=p.TSEQ + 1;
ALj = p.ACK,, (h = 1,..,n);
if (E; € p.DST) {
PREQ, := p.PSEQ; + 1
p is enqueued into RRL,;
} else p is discarded; } O

Even if F; fails to receive g from Ej;, E; does not need
to receive g unless F; € 9.DST. For example, suppose
that E; broadcasts a, b, and ¢ and E; accepts a as
shown in Figure 4. Here, TREQ; = 4 and PREQ; =
3 in E;. On receipt of ¢, F; detects a loss of b because
TREQ; (= 4) < ¢.TSEQ (= 5). Since c.PSEQ; =
PREQ; (= 3) and E; € ¢.DST, E; knows that E; ¢
b.DST [Figure 4 (a)]. If E; ¢ c.DST and c.PSEQ;
4, there must be some message b destined to E;, where
b.PSEQ; = 3 [Figure 4 (b)].
3.3 Pre-acknowledgment procedure

Let minAL;(p) be a minimum number in { AL;y |
E) € p.DST i E; knows that every destination of p
has accepted p if p. TSEQ < minAL;(p). Hence, pis
pre-acknowledged in E; by the PACf{ action.

[Pre-acknowledgment (PACK) action]
while (for p (= top(RRL;)), p.TSEQ < minAL;(p)
where p.SRC = E;
{ pis dequeued from RRL;;
p is enqueued into PRL;;
PALy; := pACKy (h=1,..n); } O

8.4 Acknowledgment procedure

Here, let minPAL;(p) be a minimum number in
{ PALj, | B, € p.DST }. PAL;; means that E
knows that E; has pre-acknowledged messages from
E), whose TSéQ < PAL;y. Hence, E; knows that ev-
ery destination of p has pre-acknowledged p, i.e. p is
acknowledged in E; if p. TSEQ < minPAL;(p).

[Acknowledgment (ACK) action]
while (for p(:top(PRL,-g), p.TSEQ < minPAL;(p)
where p.SRC=E;
{ pisdequeued from PRL;;
p is enqueued into ARL;;

}o

E; E;
TREQ; =3 agi ..} (TSEQ = 3; PSEQ; = 2)
PREQ; =2
b{} (TSE? = 4;PSEQ; = 3)
TREQ; =4
PREQJ' =3

i} (TSEQ = 5; PSEQ; = 3)

¥ time
(a) E; ¢ b.DST

E; Ej
TREQ; =3 agi,..} {TSEQ = 3; PSEQ; = 2)
PREQ; =2
byi,..} (TSEQ = 4; PSEQ; = 3)
TREQ; =4
PBEQJ =3
c..} (TSEQ =5;PSEQ; =4)
‘* time

(b) E; € b.DST

Figure 4: Acceptance condition

If p is timed out in PRL;, p is moved to ARL;, i.e.
acknowledged. The application process A; receives the
messages by dequeuing ARL;.

4 Failure Recovery

4.1 Detection of message loss

We assume that processes never malfunction and
the cluster C is aborted if any process stops by fail-
ure. In the 1C service, each E; may fail to receive
messages due to the buffer overrun. FE; has to re-
ceive only messages destined to E;. As presented in
the acceptance procedure, on receipt of p from Ej, if
PREQ; < p.PSEQ;, E; finds to lose g from Ej such
that PREQ; < ¢.PSEQ; < p.PSEQ;.

On receipt of g from By, for some j (# h), if TREQ;
< q.ACK;, E; has not received g from E; such that
TREQ; < ¢9.TSEQ < q.ACK;. However, g may not
be destined to E;. E; waits for messages from E;. If
g is not pre-acknowledged in a pre-defined time, E;
finds that some process fails to receive g. If E; is a
sender of g, E; rebroadcasts g.

4.2 Recovery by insertion

Suppose that E; finds the loss of g (from E;). There
are go-back-n and selective retransmission ways to re-
cover from the message loss. In the go-back-n scheme,
all the messages following g are removed from all the
receipt logs and are retransmitted. We adopt the se-
lective retransmission one since only g is retransmit-
ted. On receipt of g, E; has to keep RL; selectively
totally ordered after putting g in RL;, i.e. = be con-
sistent. One way is that E; finds where to insert g in
RL; and then puts g there.

[Definition] Suppose that E; fails to receive g. A
failure section f;(g) is an ordered pair {p, g) where
(1) p —rr: 9,
(2) p = g and there is no message r in RL; such
that p = r = g, and

(3) g => q and there is no r in RL; such that g =
r=>gq. 0O

[Proposition 1] Suppose that E; fails to receive g
and g is retransmitted. If ¢ is inserted only in
fi(9)=(p, q), RL; is selectively totally ordered. O
[Proof] From the definition, p = g = ¢. Hence, if g
is inserted between p and ¢, = is consistent. If g is
inserted in the outside of (p, ¢), say, before p, = is
inconsistent because g = pand p =>¢. O

Figure 5 shows that E fails to receive ¢ in Figure 3(b).
Here, sincez = z => gin RIgandz =>c=>p=> z
in RLy, z => ¢ = 2. fs(c) is (2, z). This means
that ¢ can be inserted between = and z in RLz. If
Es puts ¢ in the outside of f3(c), e.g. ¢ —rr, &, = is
inconsistent since z — gy, ¢, i.e. not selectively totally
ordered.

RL;: < zcpz)
RL;: < azbygqg
RLy: < a(zz)q

Figure 5: Failure section of ¢

Here, let a and b be messages destined to E;. a =
b is self-decidable in E; if (1) a.SRC = b.SRC and
a.SEQ < b.SEQ, or (2) there is some ¢ in RL; such
that @ = ¢ = b. This means that E; can decide on the
receipt order of @ and b by using the sequence numbers
if E; could receive a and b. a = b is decidable if (1) it
is self-decidable in some process or (2) there is some ¢
such that a = ¢ and ¢ = b are decidable.

If E; fails to receive g from E;, E; retransmits g and
E; receives g. As stated before, the problem is where
to put g in RL;. If E; can decide where to put g
in RL; without communicating with another process,
E; is independently recoverable from the loss of g. E;
can independently recover from the loss of g if either

P = g or g = p is self-decidable for every p in RL;.
Otherwise, E; is dependently recoverable.

[Example 1] Let (1,2}, b{3,3}, and c(; 33 be mes-
sages.
(1) Suppose that Ey, E,, and Ej fail to receive a, b,
and c, respectively. If a, b, and c are sent by the same
process in this sequence, each F; can independently
recover from the message loss by using the sequence
number. For example, on receipt of ¢, b = ¢ is decid-
able in 3 since b.SEQ < c.SEQ.
(2) Suppose that a, b, and ¢ are sent by different pro-
cesses. Suppose E receives a and bin a —gy, b, By
receives b and ¢ in b —gp, ¢, and Ej fails to receive
c and c is retransmitted. a = ¢ is decidable in E;
because E3 could obtain ¢ = b from E; and b = ¢
from E; by communicating with E; and Ej.

Suppose that By, Ej, and Fj fail to receive a, b, and
c, respectively. Here, a, b, and c are retransmitted, and
are received by E1, E3, and Es, respectively. Suppose
that Ey puts a after ¢, i.e. ¢ = a, E, puts b after a, i.e.
a = b, and Ej3 puts c after b, i.e. b = c. In result, =
is inconsistent because ¢ = a = b = ¢. Here, c = a,
a => b, and b = c are not decidable. Some additional
synchronization mechanism among E;, Ej, and Ej is
required to make an agreement on the consistent =
among a, b, and ¢. O

4.3 Recovery by sorting

Another way for recovering from message loss is to
sort RL; after putting g in RL;. In Figure 5, c is
retransmitted and E3 puts c on the last of RLs on
receipt of ¢. = is inconsistent since z —RL, ¢ and
¢ —Rr, 2. In order to resolve the inconsistency, the
messages can be sorted, e.g. by the process number
and PSEQ. Here, E, and Ej obtain the same ¢ = 2.

Suppose that some process fails to receive g. Let
T(g) beaset {r|g = r or g = rif fi(g) = (p, q) for
every E; € ¢.DST} which gives messages which have
to be sorted if = with g is changed. For example,
T(;):{c, P, ¢, 2} sincec = p=>2zand z = ¢
in Figure 5. Here, a sort point, sort;(g) of E; for ¢
means a message in RL; from which to the last of RL;
messages are sorted. Here, sort;(g) is defined to be p
in RL; such that p in T(g) and there is no » in RI;
such that » = p and r in T(g). For example, sort;(c)
= ¢, sorty(c) = q, and sortz(c) = z in Figure 5. A
tuple (sort1(g), ..., s0rtn(g)) is a sort line, sline (g) for
g. Figure 6 shows that sline(c) is (e, g, z) for ¢, where
|l means that « is the sort point.

Let I be sline(g1) = (s11(g1), ..., 81n(91)) and I; be
sline(gs) = (s21(g2), .-, 92,(92)). A join of I; and lg,
Ii Algis (s1,...,8,) where each s; is 8q; if 81i—RL, %2,
32; otherwise. If there are multiple messages g, ..., g,
lost by some processes, a sort line sline({gy, ..., g,ﬁ)
is sline(g) A ... A sline(g,,).

From the definition of the sort line, the following
proposition is straightforward.

[Proposition 2] A sublog including messages preced-
ing the sort point in RL; is selectively totally ordered.
0

Thesublogs < z], < azby],< az]of RL;, RL,,
RL3 in Figure 6 are selectively totally ordered.

216

E
E,
Es

RLy: < 2193 || C{l3i P{1} 2(13)]
L3 < a3} {123} bya} Yy || ‘1(]93}]
RL3: < aqas} z{123) || 2{13} 9{23}

Figure 6: Example of sort line

4.4 Recovery procedure

Since the high-speed network is more reliable, it is
the most case that one message g is lost by one process
E;. In this case, g is retransmitted, and only E; in-
serts g just before the sort point. It is referred to as a
single-loss. Thus, E; can independently recover from
the loss of g. On the other hand, if multiple messages
are lost, i.e. multi-loss, some additional synchroniza-
tion protocol is required to make the logical prece-
dence relation = consistent after the messages lost
are inserted in the logs by the processes losing them,
i.e. dependent recovery is required as presented in Ex-
ample 1. There are two ways of dependent recovery,
synchronization and sorting. The synchronization re-
quires more communications than the sorting method.
Hence, the following strategy is used in this paper:

(1) first, all the processes agree on the sort line, and

(2) then the insertion method is used for a single-loss,
otherwise the sort method is used.

First, we would like to discuss how all the processes
can agree on the sort line. Suppose that E; fails to
receive p from E;.

[Agreement procedure]

(1) E; finds that E; fails to receive p (from Ej;)
such that p.TSEQ > TREQ; and p.PSEQ >
PSEQ;. E; broadcasts RST(reset) message r;
where r,. TREQ), := TREQ), (h = 1,..,,n).

On receipt of r;, each Ej stops the data transmis-
sion. E} finds a set P, = {g| ¢ € RRLy, ¢.SRC
= Ej, and ¢.TSEQ > r;.,TREQ,} for each E},.
Let P be PyU---UP,. E; finds f in P such that
f —RRL, g forevery gin P. If Pis ¢, let f be L.
For each E}, let TREQ) be a minimum value in
T, = {tTSEQ I f —RrL, t and t.SRC = E;, }
if f # L. E; broadcasts an RST.PAK rp; where
rp.TREQ :=TREQ) (h=1,...,n).

On receipt of rp;, if rp; arrives before rp;, Ej
stores the arrival order of rp;, i.e. E; < E; in
ORDR. TREQ, := rp; TREQ;, if TREQ; >
rp;. TREQ (h S 1,...,n).

On receipt of rpi, ..., 7p,, E; finds a set Q,
= {q| ¢ € RRL;, ¢.SRC = E;, and ¢.TSEQ >
TREQ4} for each Ey. Let @ be Q; U---U Q,..
Ey finds f in Q such that f —sgpr, ¢ for
every ¢ in Q. If Q is ¢, let f be L. E,
broadcasts RST_ACK ra; where ra, TREQ);, :=
TREQy, ray. PREQy := PREQj, rap.PSEQ,
‘= PSEQh, and ray.ORDR := ORDR (h =
1,..,n).

(5) On receipt of ra;, PRy := ra;.PREQ; and PS;;
= ra;.PSEQ; (j = 1,..,n). If ra;, TREQ;, #

TREQ} for some h or ra,,ORDR # ORDR , E;
broadcasts ABORT message to abort C.

(6) On receipt of ray, ..., ra,, each E} has the same
TREQ,, .., TREQ,. Then, f denotes a sort
point of E;. O

(Example 2] In Figure 6, Ej fails to receive c¢. Sup-
pose that TSEQs of a, b, and care 1, 2, and 3, TSEQs
of pand ¢q are 1 and 2, and TSEQs of z, y, and z are
1, 2, and 3, respectively. Here, E;, E;, and Ej3 have
the following TREQ = < TREQ,, TREQ,, TREQ3
>.

E, TREQ =<4,3,4>.
E; TREQ = <4,3,4>.
Es TREQ=<3,3,4>.

First, E3 broadcasts RST r3 where TREQ = <
3,3,4 > when Fj finds the loss of c.

On receipt of 73, E; obtains P, = {c} since c.TSEQ
=r3.TREQ =3,and P, = P3 = ¢,ie. P = {c}. E;
and Ej obtain P = ¢. Here, each E; has the following
fi and RRL; whose || denotes f;.

RRL;: <z l|lcpz] fi=c
RRL;: <azbygqll] fo=L
RRIL3: <azzql] fa=1.

E, broadcasts RST_PAK rp; whose TREQ = <
3,1,3 > because ¢ —gRL, P —RRL, 2, ¢cTSEQ =
3,p.TSEQ =1, and 2.TSEQ = 3. E, broadcasts rp;
whose TREQ = < 4,3,4 >. E; broadcasts rp3 whose
TREQ = < 3,3,4>.

On receipt of rp;, rpy, and rp;, each E; obtains
TREQ =< 3,1,3 >. In E;, fyis ¢ since ¢.TSEQ >
1. In Ej3, f3 is z since 2.TSEQ > 3,¢.TSEQ > 1, and
2 —RRL, ¢- In E1, fi = c. Here, the sort line sort(c)
is < f1,f2,fa > = < ¢,q,z > as shown in Figure 6.
Each E; broadcasts RST_ACK ra; whose TREQ =
<3,1,3>.

On receipt of ra;, raj, and ras, the agreement
procedure terminates. Here, every E; has the same
TREQ. Hence, all the messages preceding the sort
point f; are acknowledged in E;. That is, ¢ in RRL,,
a, z, b,and y in RRL;, and a and =z in RRL3 are ac-
knowledged. Finally, the following RRL; is obtained.

RRL;: <cpz)
RRL;: < q]
RRL3: <zgq)]. O

[Proposition 3] By the agreement procedure, every
rocess obtains the sort point for messages lost. O
FProof] Suppose that E; fails to receive p. E; broad-
casts RST r; and every E) receives r;. In step (2)
of the agreement procedure, E; finds ¢* preceding
every message from Ej, in RRL), whose TSEQ >
. TSEQy, (h = 1,...,n). Let f denote some g* such
that ¢* —RgRpz, ¢/ for every E;. This means that p =

f = ¢ for every E; and p can be inserted in RRL;
such that p —rpr, f. However, there may be some ¢

217

in RRLy such that p = ¢ —rrr, p because multiple
messages may be lost. Then, F} broadcasts rp, where
rpy. TREQ), = TREQ), = ¢ TSEQ: (h=1,..,n).

In step (3), Ex receives rpi, .., mpn. In (4),
TREQ);, denotes the minimum one in { rp;. TREQ},
woy o TREQ) } (h=1,..,n). Since every E} sends
ray and receives ray, ..., 7@y, Ey has the same TREQ.
E; finds ¢* preceding every message from each E} in
RRL; such that ¢".TSEQ > TREQ, (h=1,..,n).
Then, let f denote some ¢" in RRL; such that ¢*
—RrRrL, ¢ for every E;. This means that p = f and
no message t in RRL; such that p = ¢t = f. That
is, f denotes the sort point of E) for all the messages
lost. O

Which recovery method, insertion or sort one is
used depends on whether it is a single-loss or not.
Let FAIL be the cardinality of { PR;; | PR;; < PS;;
(i,j=1,...,n)}. A single-loss occurs if FAIL = 1, and
multi-loss if FAIL > 1.

[Retransmission (RET) procedure]
(1) E; retransmits p if E; has sent p and p.PSEQ;
> PR;; for some E; € p.DST.

(2) On receipt of p where E; € p.DST, if PREQ;
< p.PSEQ);, E; puts p just before spoint;(p) in
RRL; if FAIL = 1, otherwise E; puts p into the
tail of RRL;. O

In the agreement procedure, each E; knows what mes-
sages E; fails to receive and F; has sent but another
fails to receive. Unless E; receives p from E; such that
p.PSEQ; < PS;; in a pre-defined time, E; requests
E; to retransmit p.

If there are multiple messages lost, each process
sorts RRL; by the following sorting rule.

[Sorting rule]
(1) If p.SRC = E;, ¢.SRC = Ei, and E; < E; in
ORDR, then p —gri; ¢

(2) If p.SRC = ¢.SRC and p.PSEQ; < ¢.PSEQ;,
then p_'RRLJ' q. O

[Example 3] (1) Insertion: RRIL; =< c' p* 28,
RRL; =< ¢?], and RRL3 =< 2% ¢?] are obtained
by applying the agreement procedure to Figure 6 as
presented in Example 2. Since it is a single-loss, i.e.
E; loses ¢, E; retransmits ¢ and Fg inserts ¢ before z
in RRL3, i.e. RRLz =<czq]

(2) Sorting: Suppose that E; and Ej fails to receive
y and e, respectively in Figure 3(b) i.e. multi-loss.
The sort line sline({c,y}) = (¢, ¢, z) as shown in
Figure 6 is obtained by applying the agreement pro-
cedure. Then, RRL; = < ¢! p? 2%], RRLy = < ¢?,
and RRL; = < 2° q2] ¢ and y are retransmitted
and are appended to the last of RRL3 and RRL,, re-
spectively. Suppose that RST_PAKs are received by
E3, E;, and then E;, i.e. E3 < E; < E; in ORDR.
Each E; obtains RRL; as shown in Figure 7 by sorting
RRL;. They are selectively totally ordered. O

RRL;: < ciw} pil} 2?13}]
RRL3: < Qi3 Uiy]

. = <Yy %]
RRL3: < Z{13} 923} {13}]

Figure 7: Example of sorting

From Proposition 2, it is clear for the following
proposition to hold.

[Proposition 4] A sublog of every RL; obtained by
sorting messages following the sort point after putting
all the messages lost by E; on the last of RL; is selec-
tively totally ordered. O

[Theorem 5] The ST protocol provides the ST ser-
vice by using the 1C service.

[Proof] It is clear if there is no message loss. We
consider a case that some messages are lost. It is sure
that every message loss is detected by the failure con-
dition. From Proposition 3, every process agrees on
the sort line by the agreement procedure. There are
two cases, i.e. single-loss and multi-loss.

(1) Suppose that the single-loss occurs, say, E; loses
a message g. From Proposition 1, the theorem holds
since only E; inserts g in the sort point.

(2) Suppose that the multi-loss occurs. From Proposi-
tion 2 and 3, every receipt log obtained by the sorting
method is selectively totally ordered. O

5 Evaluation

We would like to evaluate the ST protocol for a clus-
ter C = (Ey,..., Ey) in terms of the number of messages
retransmitted in the presence of the message loss. Let
d (< n) be an average number of destination processes
of each message. Let f be a probability that each mes-
sage is lost by one process. Let RL be a sequence of
messages transmitted in the 1C network. Let L be a
number of messages in RL. Each E; accepts only mes-
sages destined to E; from RL. Let F be (1- f(d/n))?,
i.e. probability that each message is received by every
destination. The probability that each message is lost
by at least one destination is (1 — F).

Since the selective retransmission is used in the ST
protocol, only messages lost are retransmitted. The
expected number Rg of messages retransmitted in RL
is given as follows.

(1)

Rs = L(1~ F).

Next, let us consider how many messages are re-
transmitted in the go-back-n scheme. In the go-back-n
scheme, if E; fails to receive p which is destined to Ej,
E; removes all the messages following p in RRL;. The
messages removed are retransmitted by their source
processes. If a message g removed by F; is accepted
by E;, E; removes all the messages following ¢ from
RL;. Thus, the removal of messages in one process
is propagated to another process. The probability
that p = RL[l] is lost by one destination while ev-
ery RL[h](h < 1) is received by every destination is

< 23 ct 2
gla} 2{13} Py]

< #{13) €1y} 92y]

218

F'=1(1 — F) (I > 1). The expected number of mes-
sages retransmitted for I is F'~*(1 — F)(L — 1 + 1)
(1 <1< L). Hence, the expected number Rg of mes-
sages retransmitted is given as follows.

RgziF’-l(l—F)(L—Hl). (2)
i=1

Figure 8 shows Rs/L and Rg/L for f where ST
means d/n = 0.5 and TO means d/n = 1. Figure 9
shows Rg/L and Rg/L for d/n and f = 0.005. Fol-
lowing both figures, the ST protocol with the selec-
tive retransmission implies less number of messages re-
transmitted than the go-back-n. The number of mes-
sages retransmitted by the selective scheme is almost
O(d/n) while O((d/n)¢) in the go-back-n one.

0.2
TO : go-back~n ——
ST : go-back-n —-=-
TO : selective ----
0.15 ST : selective -

Retransmitted PDUs [R/L]

0.2 T
go-back-n/——

— selectiyé -~--
=

s

=3

a

a

Y

3 0.1

P

2

=

£

a

&

=

1

e

@

3

0

Figure 9: Ratios of retransmitted messages for d/n

Next, let us consider the processing time C to re-
cover from the message loss. We assume that time
to insert one message in the receipt log is 1, and
time to sort h messages is h. We assume that time
for comparing the sequence numbers of the messages
in the log is neglectable compared with time to in-
sert the messages in the log. The probability Fy that
only one message is lost by only one process is given
f(d/n)(1— f(d/n))"E~1. The probability F; that mul-
tiple messages are lost by more than one process is
1 — Fo — FL. The expected time C of the ST recov-
ery per each process is Fy/n + FiRg. Here, let D be
the cost of each process for processing messages in RL

without message loss. D is L from the assumption.
Figure 10 shows the ratios of C to D for f and d/n.
For example, if f is smaller than 0.001, the overhead
for recovering from the message loss is below 20% of
the normal processing time.

1
= 0.8
[
L
g 0.6
Rl
o]
o
5
3 0.4
@
o
[¥3
o
o 0.2
.
/.
o

Figure 10: Ratio of the processing time for f

6 Concluding Remarks

In this paper, we have presented a group commu-
nication protocol which provides a group of processes,
i.e. cluster with the selective totally-ordering (ST)
service by using the high-speed 1C network. The pro-
tocol is based on the distributed control. In the ST
service, each message is delivered to any processes in
the group and different messages are received by the
common destinations in the same order in the presence
of the message loss. Furthermore, we have shown the
evaluation of the ST protocol. By using the ST pro-
tocol, teleconferencing and cooperative work can be
easily realized.

References

{1] Abeysundara, B. W. and Kamal, A. E., “High-
Speed Local Area Networks and Their Perfor-
mance: A Survey,” ACM Computing Surveys,
Vol.23, No.2, 1991, pp.221-264.

Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addisson Wesley, 1987.
Birman, K. P., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM TOCS, Vol.9, No.3, 1991, pp.272-
314.

Chang, J. M. and Maxemchuk, N. F., “Reliable
Broadcast Protocols,” ACM TOCS, Vol.2, No.3,
1984, pp.251-273.

Defense Communications Agency, “DDN Proto-
col Handbook,” Vol.1-3, NIC 50004-50005, 1985.

(2]

(3]

(4
(5]

[6] Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.1, 1991,
pp.38-58.

[7) Garcia-Molina, H. and Kogan, B., “An Imple-
mentation of Reliable Broadcast Using an Unre-
liable Multicast Facility,” Proc. of the 7th IEEE
Symp. on Reliable Distributed Systems, 1988,
PpP-428-437.

219

(8]
(9}

(10]

[11]

(13]

14]

(18]

[16]

(17]

(18]

[19]
(20]

[21]

International Standards Organization, “OSI —
Connection Oriented Transport Protocol Speci-
fication,” ISO 8073, 1986.

Kaashoek, M. F. and Tanenbaum, A. S., “Group
Communication in the Amoeba Distributed Op-
erating System,” Proc. of the IEEE ICDCS-11,
1991, pp.222-230.

Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, 1978, pp.558-565.

Luan, S. W. and Gligor, V. D., “A Fault-Tolerant
Protocol for Atomic Broadcast,” JEEE Trans. on
Parallel and Distributed Systems, Vol.1, No.3,
1990, pp.271-285.

Melliar-Smith, P. M., Moser, L. E., and
Agrawala, V., “Broadcast Protocols for Dis-
tributed Systems,” JEEE Trans. on Parallel and
Distributed Systems, Vol.1, No.1, 1990, pp.17-25.

Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of the IEEE ICDCS-11 1991,
Pp.239-2486.

Nakamura, A. and Takizawa, M., “Design of Re-
liable Broadcast Communication Protocol for Se-
lectively Partially Ordering PDUs,” Proc. of the
IEEE COMPSACY1, 1991, pp.673-679.
Nakamura, A. and Takizawa, M., “Priority-Based
Total and Semi-Total Ordering Broadcast Pro-
tocols,” Proc. of the IEEE ICDCS-12, 1992,
pp.178-185.

Nakamura, A. and Takizawa, M., “Causally Or-
dering Broadcast Protocol,” to appear in Proc.
of the IEEE ICDCS-14, 1994.

Schneider, F. B., Gries, D., and Schlichting,
R. D., “Fault-Tolerant Broadcasts,” Science of
Computer Programming, Vol.4, No.1, 1984, pp.1-
15.

Takizawa, M., “Cluster Control Protocol for
Highly Reliable Broadcast Communication,”
Proc. of the IFIP Conf. on Distributed

Processing, 1987, pp.431-445.

Takizawa, M., “Design of Highly Reliable Broad-
cast Communication Protocol,” Proc. of IEEE
COMPSAC87, 1987, pp.731-740.

Takizawa, M. and Nakamura, A., “Partially Or-
dering Broadcast (PO) Protocol,” Proc. of the
IEEE INFOCOM90, 1990, pp.357-364.
Takizawa, M. and Nakamura, A., “Reliable
Broadcast Communication,” Proc. of IPSJ Int’l
Conf. on Information Technology (InfoJapan),
1990, pp.325-332.

Tanenbaum, A. S., “Computer Networks (2nd
ed.),” Englewood Cliffs, NJ: Prentice-Hall, 1989.

