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Abstract

In this paper, an automatic test case generation method
for Estelle is proposed. A formal model is introduced to
describe the dynamic properties of Estelle specifications
so as to verify the difference between the behavior of the
specification and the behavior of its fault models. Based
on the difference, an algorithm is presented to produce
test cases that can detect such implementation faults. The
algorithm can generate test cases not only for single mod-
ule specifications, but also for systems containing multiple
modules that run concurrently. In addition, heuristics are
suggested to improve the performance of the test case
generation process.

1 Introduction

Protocol conformance testing is a major issue in the de-
sign of reliable communication networks. It ensures that
a protocol implementation is consistent with its specifi-
cation in various hardware and software environments.
One major issue of conformance testing is fest case gen-
eration. Most of the test case generation methods pro-
posed are based on the Finite State Machine (FSM) model
[1, 2, 3, 4). However, the FSM model can only specify
problems within the domain of regular languages. To
solve more general problems, other models such as the
Extended Finite State Machine (EFSM) (5], Estelle [6] or
LOTOS [7] are used [8, 9, 10, 11, 12, 13, 14]. These
Models usually contain memories. Therefore, in addition
to testing control flow, the data aspect of the models needs
to be considered as well.

A test case is meaningless if one does not know its
purpose. A test purposes is a set of statements showing
what type of error a test case tries to detect. The error
type is called a fault model [15], which must be given
before any meaningful test case can be generated. The test
methods mentioned above are used to generate test cases
for a fixed fault-model. When one needs the confidence
that certain critical faults will not occur, these methods
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cannot guarantee the detection of the cirtical faults if they
are not included in the fixed fault-models.

It is infeasible to generate a test case for every possible
fault. Thus, it is desirable to provide the protocol designer
with a freedom of choosing whatever faults he/she be-
lieves are important. Based on our previous work [13, 14],
a test case generation method for EFSM that produces test
cases for given fault models [16] has been developed. The
method employs a program verification technique, called
axiomatic semantics [17, 18, 19], to symbolically verify
a protocol specification. The difference between the be-
havior of the specification and the behavior of the fault
model is analyzed and then test cases are generated based
on the difference.

Since Estelle has been adopted as an international stan-
dard specification language for communication protocols,
it is interesting to extend the proposed method in [16]
from EFSM to Estelle. In this paper, an automatic test
case generation method for Estelle is proposed. After
axioms for Estelle statements are defined, the same algo-
rithm in [16] can be used to generate test cases for given
fault models. In addition, the same method is extended
to generate test cases for multiple modules running con-
currently. Furthermore, a heuristic search method is also
suggested to improve the performance of the search algo-
rithm.,

The rest of this paper is organized as follows: In Sec-
tion 2, the behavior model proposed in [16] is briefly
introduced. Then, axioms for Estelle statements are de-
fined in Section 3, and the definition of a test case and
how to generate it are presented in Section 4. Finally,
conclusions are given in Section 5.

2 Background
2.1 Estelle and EFSM

Estelle [6] is a description language for Extended Finite
State Machines (EFSM). An EFSM is a Finite State Ma-
chine (FSM) with memory (called variables hereafter).
Similar to an FSM, an EFSM contains a set of states and
transitions pointing from one state (called head state) to
another (called tail state). There are usually a condition
and an action associated with each transition. The action
of a transition can be executed only when the EFSM is at
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Figure 1: The sender of an ABP protocol

the head state of the transition and the condition is satis-
fied. After the action is executed, the EFSM moves to the
tail state of the transition and becomes ready for execut-
ing next transition. In Estelle, the head and tail states are
defined in from and to clauses, respectively. The condi-
tion of a transition includes when and provided clauses.
The former inputs a message from an interaction point
(IP) and the latter imposes a restriction under which the
action can be executed. The action is a Pascal statement
sequence quoted between reserved words begin and end.
The statements can be executed only when both the input
in when clause is available and the condition in provided
clause is satisfied. Readers who are not familiar with the
Estelle syntax are referred to [6).

In addition to the clauses described above, there are
declaration statements and other clauses that are not im-
portant for generating test cases. Therefore, in the rest of
this paper, we focus only on the portion of specification
that defines the transitions, and assume that all modules,
channels, IPs, and variables are properly defined.

A sample Estelle specification is shown in Figure 1,
which is the sending side of an Alternating Bit Protocol
(ABP). The structure of the protocol is shown in Figure 1a,
the state diagram is shown in Figure 1b, and correspond-
ing Estelle transitions are defined in Figure lc.

2.2 Behavior of an EFSM

Estelle is able to clearly describe the structure of an
EFSM. However, knowing the structure alone is inade-
quate for generating test cases. In order to find test cases
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for an EFSM, one needs to know the dynamic property
of the EFSM as well. Specifically, the knowledge of how
the variables in the EFSM change their values is needed.
Therefore, the behavior model proposed in [16] is used in
this paper to describe such changes.

When a transition of an EFSM is executed, the val-
ues of the variables change accordingly. The values are
preserved by their versions, which provide names to store
different values of the same variable during different pe-
riods of time. The versions are denoted by an operator v
(pronounced “new”) followed by the names of the vari-
ables. For example, vz denotes a newer version of vari-
able z. Similarly, vvz (or simply v2z) denotes a newer
version of vz, and »%z (or simply ) denotes the original
version of variable .

The relationship between versions and their values is
called a scenario. Formally, a scenario is a function that
maps a set of versions into a set of values. It is denoted
as a sequence of versions and their corresponding values
quoted by a pair of angle brackets ({ }). For example, a
scenario, (z =0,y =0,vz=1,vy=0, ...}, shows that
x and y are originally zeros, and then change to 1 and 0
later, respectively.

An assertion is a set of scenarios. It is denoted by
a boolean expression, called predicate, quoted by a pair
of braces ({ }). The assertion contains those scenar-
ios that satisfy the predicate. For example, assertion
{ry > 0} contains both scenarios (vz =1,vy =0, )
and (vr =1,vy=1,...). The set of all possible scenar-
ios that can be developed after a state, say a, is denoted
by B[a]. For instance, 8[a] = {vy > 0} means that if
the EFSM is at state a, every possible scenario developed
thereafter has the property that the first version of y is
greater than or equal to zero.

Let M be an EFSM. The behavior of M is denoted as
BIM], which is defined as S[M] = | Jy,, Bls], where s is a
state of M. In addition, let A, and A, be two assertions,
and p; and p; be two predicates such that A; = {p1} and
Az = {p2}. It can be shown that 4; U Ay = {p, V p,},
A1 N Ay = {p1Ap2}, A1 = {-m}, and A; — A,
{p1 A=p2}.

2.3 Axioms

A rule that describes how a statement changes the course
of the scenarios” development is called an axiom. Fig-
ure 2 is a simple example for the axiom of an assignment
statement. The transition starts from state h, points to
state ¢, and contains only one action: “z := e,” which
assigns the result of expression e to variable z. The ax-
iom means that the scenarios that can be developed after
state h is the same as the scenarios developed after state
t with one more restriction that the new version of vari-
able z is equal to the result of expression e (denoted by
assertion {vz = e}). Since variable z has been upgraded,
any development of variable x after state ¢ must start
from the upgraded version. Therefore, the second term
of the axiom is denoted by 3[t]|{**}, meaning that every
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Figure 2: An example of an axiom

occurrence of z in f[t] is replaced by vz. In general,
for any assertion A, A|{*'#} denotes replacing each oc-
currence of vz in A by vitiz. For example, if A =
{z=0Avz =1}, then A[l""}= {vz = 0AV2x =1},

Let A7 be the assertion that indicates the restriction
imposed by 7', and let Vr be the set of new versions
created by T. If the set of scenarios developed after
state h through transition T' is denoted as G[h]r, then
Blhlr = Ar N Btr]|V”, meaning that the scenarios de-
veloped after h through T are those developed after {7
(with upgraded versions) that satisfy Ap. The parallel
composition of the behavior at state h (3[h]) means that
A[h] is the combination of all the transitions fan out from
h. Thus, 8[h] can be derived as follows:

Blh] BlRlT, U BlR]T, U --- L BLA]T,
(Ar, 0 Bltr, 1171 ) U (A, 0 Btp,] VT2 ) U -

U(Ar, N B[tr,}[VTn)

i

The serial composition of [h] means that 3{h] is the re-
sulting scenario set derived from a sequence of transitions
after state h. Therefore,

Ap, 0 ﬁ[tTLHVT‘ v
Aq, 0 (Ag, 0 Blt,]|V72) VT )
Ap, 0 Ary |V NBlEr,]| VT %V

B[R]

= Ap NAfg, |V7‘1 NAT, |VT1UVT2 n
. ﬂﬂ[tT"]lle uVTQw---uVTn

where the operation “&” is defined as follows:

Definition 1 Let V| and V-, be two sets of versions. Then

VeVe= {¥Huw|Iiw e Vi Aiwe Va}u
{V'w | Iiw € Vi AVviw g Va}U
{viw|YWiw g Vi AIiw e V)

ve =

VuVuw. . uV
N !

n
{v™w | viw € V}

3 Axioms for Estelle

Estelle specifications can be written in normal form spec-
ifications, in which every transition is specified in the
following format:
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from h

tot

when p.m(z1,22,...,Zn)
provided B

begin S end;

where h and t, respectively, are the head and tail states
of the transition, p is an interaction point, m is a message
received from p with arguments z, through z,,, and B is a
boolean expression indicating the condition under which
a sequence of Pascal statements, S, can be executed. A
transition can be divided into two simpler transitions: the
first transition contains when and provided clauses, and
the second executes S. An auxiliary state u can be placed
between the two transitions. Then, the axiom for an Es-
telle transition can be defined as follows:

Axiom 1
B[Rl = {vep = m(vz1,va2, ...y vTn)}N

{(vz1 = vr) A (Vo2 = VER) Ao A (van = V™ &)IN

{vr = vep}n

{B}n

ﬂ[u“[l/c,,vz‘l ..... VI UK, v}

There are five terms in the axiom. The first term shows
that the current data received from ¢, (denoted vc,) is
message m with arguments vz, through vz,,. The values
of vz, to vz, are shown in the second term, in which an
auxiliary variable  is used to indicate different input val-
ues. The third term is used to arrange the external events
in chronicle order, where 7 is an auxiliary variable used
to record current /O events. Therefore, “vT = vc,” indi-
cates that the current external event is at channel c,. The
fourth term shows that the condition in B must be satis-
fied. The last term means that the scenario set developed
after the transition contains those scenarios developed af-
ter state u with variable versions updated.

The remaining problem is to define the axioms for S
in order to obtain S[u] in terms of 3[t]. In the following
axioms, the notations A, and V; represent, respectively,
the assertion and the set of new versions developed after
executing a statement s or a sequence of statement s.

Axiom 2 (Empty Statements)
If S is empty, Blu] = Plt].

Axiom 3 (Sequential Statements)
If Sis “s; S',” where s is a statement and S’ is a se-
quence of statements,

Blu] = 4, N As/|¥ NG| (Vevs)

Axiom 4 (Assignment Statements)
If S is “z := e,” where z is a variable and e is an
expression,

Alu} = {va = e} 0 A1) )



Axiom 5 (Output Statements)

If S is “output p'.m’(ey, e, ..., €,),” where p' is an in-
teraction point, m’ is an output message, and expressions
€1 10 e, are the arguments of m/, then

Blu] = {vep = m'(e1,e2,..,en)} N {vr = vep } ﬁﬁ[t]|("'°ﬂ”"r)
where c, is the corresponding channel of p'.

In Axiom 5, the first term indicates that the next event
at channel ¢y is m'(e;,e,...,en). The second term
appends the event to the sequence of external events
recorded by .

Axiom 6 (Selection Statements)
If S is “if B then S, else S,,” where B is a boolean ex-
pression and Sy and Sy are two sequences of statements,

Alu] = ({B}N As, N B[] |7 ) U ({~B} N As, N1 B[t]|V=2)

A selection statement can be viewed as a parallel compo-
sition of two transitions. One can be executed only when
condition B is satisfied, and the other only when it is not.

Axiom 7 (Function Calls)
Let F be a function defined as follows:

Function F(z1, z, ..., £,,);
begin Sp; F := e end;

where z1,x,...,23 are parameters of F, Sr is a se-
quence of statements, and e is an expression. If S is
“y := F(ay, a3, ...,a,),” where a1, ay,...,a, are argu-
ments, then

Blul = {(vri=a1Aver=asA..Avzy= an)}N
As. V'

{vy=e}|V5r¥Y

ﬂ[t]IVSFUV’U{uy}

where V' = {vz,,vz,, ... vz, ).

The first term of the axiom indicates that the arguments
(the a’s) are assigned to the parameters (the z’s). The
assertion imposed by the body of the function (A4 g r) Te-
stricts the development of the scenarios after the function
call. Therefore, it is included in the second term. The
third term shows that after the function call, variable v
receives the value from expression e (thus {vy = ¢}). Fi-
nally, the new versions generated by the above are con-
tained in Vs, WV’ W {vy}, so the variables in 3[t] need to
be upgraded accordingly. The axiom for procedure calls
can be defined in a similar manner.

Axiom 8 (Procedure Calls)
Let P be a procedure defined as follows:

Procedure P(z,, z3, ..., z,, var y1, var ya, ..., var Ym);
begin Sp end;
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where z1,x3,..,2n and yi,ys,...,Ym are variables
and Sp is a sequence of statements. If S
is “Play, as, ..., an, 01,00, ...,0,),” where aj,as,...,a,

and by, by, ..., b, are arguments, then
Blu] = {(ve1=a1Avz, = @z A ... AVp = an)A
(v =biAvya =ba A Avym = bm)}N
,

ASPIV n
{vhi =y1 Avby =y A A by = yn}|V5Puvl sl
ﬁ[t”vspuv'wv“

where V' = {vx) vy, ..., ve,, vy, vy, ..., VYm} and

V" = {vby,vby, ..., vbp}.

It is assumed that every variable has its own name. Al-
though this is not true in a real specification, name con-
flicts can always be resolved by attaching the correspond-
ing function or procedure names to the variable names.

Axiom 9 (While Statement)
If S is “while B do S',” where B is a boolean expression
and S’ is a sequence of statements, then

n—1

Blul = ({BY N As]|Y¥ N[{-~B} n B[] V&

k=0

Let B[u]; denote the behavior of state u after the i-th
iteration, and assume that S’ will be executed n times.
Then,

Blu] = ({BYN As))nBlu)y Vs

({B} N As:) N ({B} N As)|Vs' (B[], |Ve

= MiS({BYN As)|" npfu), V¥
= MeIi({BY N As) Ve a({~B} n g[1]|¥<)

It is possible to construct a data structure to represent
“Mrzo({B} N As:)|Vs” such that n remains undefined;
the actual value of n will be determined later when the
specification is analyzed. Similarly, repeat and for state-
ments can be defined as follows.

Axiom 10 (Repeat Statements)
If S is “repeat S’ until B,” where B is a boolean ex-
pression and S' is a sequence of statements, then

Blu] = ()[4s:|"s7" n{=BYV*] N [{B} N g[t]] |V
k=1

Axiom 11 (For-To Statements)

If S is “for i :== m to n do S',” where i is an integer,
m and n are integer expressions, and S' is a sequence of
statements, then

Blu] = h {ri=k+ m}ﬂAS,]l(viUVs,)“ nﬂ[t”‘/;l’—vvd»l
k=0



B[S1] = {{veu = send(vd)) A (vd = vr) A (v1 = vey)}N
{{ver = msg(vd, b)) /\2(1/21' = ver )N
ﬁ[szn{vcu,vc,,ud,wc,u T}

B[S2] = ({(ver = ack{va)) A (va = ve) A (b1 = ver)JU

{(va # 8) A (3er = msg(d,0)) A (427 = 2er)
ﬁ[sz]l{ua,uzcr,un,uzr})u

({(ver = ack(va)) A (va = vi) A (T = ver)}N
{ra=b)A((b=0Avb=1)V(b=1 Avb =0))}
’B[sl]l(va,ub,vc,-,wc,yr))

Figure 3: The behavior function of the ABP in Figure 1

Axiom 12 (For-Downto Statements)
If S is “for i := n downto m do S’,” where i is an
integer, m and n are integer expressions, and S' is a
sequence of statements, then
n—-m "
; k n—m
Blul = [ i =n—k}nds]|5Vs)" npfe)"s

k=0

The behavior of the EFSM in Figure 1 can be derived
as the equations shown in Figure 3, where ([S;] is de-
rived from Axioms 1 and 5, and 3[S,] is derived from
Axioms 1, 4, 5, and 6. For simplicity, the initial transi-
tion is ignored. Substituting B[S 2] into the first equation
in Figure 3, 3[S1] can be expanded to describe more de-
tailed information about the behavior of the specification
at state S;. Unless every executable path ends up at a
final state, the recursive functions never stop. A method
to extract a finite external event sequence as a test case
will be presented in the next section.

4 Test Case Generation
4.1 Functional Equivalence

Two scenarios are functionally equivalent if they generate
the same external events. For example, scenarios

{va = 0,vd = vk, vb = 1,ve, = msg(vd, vb), vT = ver), and
{va = 1,vd = vr,vb = 1,vc, = msg(vd, vb), vr = ver)

are functionally equivalent since both output msg(vk, 1)
to channel ¢, as their first external events (because v7 =
ve, = msg(vd,vb), where vd = vk and vb = 1). The
value of va is unimportant in the example since it does
not affect the outcome. Formally, two scenarios h and
g are functionally equivalent if h(v*7) = g(v*7) for any
nonnegative integer ¢, where h(1i7) denotes the value of
Vi1 in scenario h.

A functionally equivalent set (FES) of an assertion A
is a set of all functionally equivalent scenarios of the sce-
narios in assertion A. The FES of A, denoted FES(A),
is defined as follows:

Definition 2
FES(A) = {g | Vi > 0,3h € A, [h(vi7) = g(viT)]}

n
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Figure 4: Two mutants for the EFSM in Figure 1

For example, if assertion

A={va=0Avd =vsAvb=1Ave, = msg(vd,vb) Avr = ver}
then

FES(A) = {vd = vr Avb = 1 Aver = msg(vd, vb), vr = ver}

In other words, the FES() function removes those predi-
cate terms that are irrelevant to the external events. It can
be shown that FES(A U B) = FES(A) U FES(B) and
FES(AN B) = FES(A) N FES(B).

4.2 Test Cases

A mutant is a specification of a fault model. For example,
a mutant of Figure 1 is shown in Figure 4, in which the
faulty transition T2 points to a wrong state S;.

A test scenario is a scenario whose external event can
distinguish a correct EFSM from its mutants. That is,
the external event sequence generated by the test scenario
cannot be reproduced by the mutants. A test scenario p
that distinguishes a correct EFSM M from a mutant F’
can be defined as follows:

Definition 3 A scenario p is a test scenario for mutant

F if p € (B[M] - FES(B[F])).

A test case is a prefix of the external event sequence
generated by a test scenario. If h is a test scenario for
an EFSM M and its mutant F', a test case is defined as
follows:

Definition 4 An event sequence T is a test case if
1. T = (h(1), h(v7), R(¥?7), ..., h(v"*T)), and

2. Vg € FES(B[F]),3i < n, [h(viT) # 9(v'7)].

The definition means that, a test case is a finite external
event sequence that contains at least one element that can-
not be reproduced by a faulty implementation. Therefore,
one can recognize an incorrect implementation once an
unexpected external event is produced.

4.3 Test Case Generation for Single-Module
Specifications
For any EFSM M and its mutant F, it can be proved that

Bs] — FES(S[F]) C B[M] — FES(B[F]), where s is a
state of M. Though a test scenario can be found anywhere



in B[M] — FES(B[F]), it is more convenient to select
the initial state as state s and to search for a test scenario
in Bfs] — FES(B[F]). Finding a test scenario from the
latter not only avoids setting up the implementation under
test (IUT) to the starting state of the test scenario, but also
reveals the correctness of the initial transition.

Let h be a scenario starting from state s. Let u be
a state that the corresponding path of h passes through.
Then, it can be shown that h € A N Bu] |V, for some
assertion A and new version set V. Hence, any set of
scenarios, H, can be represented as | J, (An N Blux]|"*),
where h is a scenario in H, and A, up, and V), are an
assertion, a state, and a set of new versions, respectively.
Let H and G be two sets of scenarios for EFSM M}, and
My, respectively, such that H = | J,(Ax N Blus]|"*) and
G = |J,(Ag N Blug] |Ys). Then, H — FES(G) can be
derived as follows:

#-FES(6) 2 UﬂK,.,,
kg

where K), 4 =
An N Blun]|™r
(An ~ FES(Ag)) N Blun]|™»

if Ay N FES(A,) = 0

if Ay N FES(Ag) # 0A
Ay — FES(Ag) # 8

otherwise

(1a)

(1b)

An 0 (Blua)| " —FES(B[u,]]"9)) (2)

As shown in the equations above, K ; can be divided
into Cases la, 1b, and 2, which are illustrated in Figure 5.
Each circle in the figure represents a set of scenarios. In
Case 2 (Figure 5a), Aj is covered by FES(A,), meaning
that for any scenario in Ay, there is a scenario in A,
that generates the same external event sequence as Ay
does. Therefore, Ay along cannot distinguish H from
G. To find the differences between H and G, f[us] [V*
—~FES(8[u,]) |¥7) is recursively calculated. In Case 1b
(Figure 5b), some scenarios in Ay are not covered by
FES(A,), which means that a scenario that distinguishes
H from G can be found in Aj. Therefore, f[us] |"* is
expanded to impose more restrictions to find a scenario in
the shaded area. In Case la (Figure 5c), no scenarios in
Ap are covered by FES( A, ), which means every scenario
in Ap can be used to distinguish H from G. Therefore,
the external events generated by a scenario in A, can be
used as a test case.

Let §[s] be H, and B[F] be G. Using the result of the
equations above, ([s] — FES(B[F]) can be computed by
the following algorithm.

1. Let there be a quintuple (u,p,u’,p’, c), where  and u’
are assertions, p and p’ are states, and c is 1a, 1b, or 2 with
respect to Cases la, 1b, or 2 above. Let Q be a queue that
initially contains (s, true, u’, true, 2) for every state u’ in

2. Get an element (u, p, u’, p’, ¢) from Q and check the fol-
lowing conditions.

(a) If c is in Case 1a, check if there is any element, say
(v,9,v',¢',d) in Q such that p = ¢. If there is none,
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@ - (Ax)

(a) Case 2

FES (A,)
An

(b) Case b
Figure 5: Illustration of the three cases of K ,

{(c) Case la

the corresponding path of assertion p generates a test
case. Exit the program and return p.

(b

ferd

If ¢ is in Case 1b, for every outgoing transition ¢ from
state u, put {ve, (p A pe), w', p, d) into Q, where v,
is the state ¢ pointing to, p. is the assertion imposed
by the action of ¢, and d is Case la, 1b, or 2, based
on the relation between {p A p.} and FES({p'}).

If ¢ is in Case 2, for every outgoing transition ¢
from state u, and for every outgoing transition ¢’
from state «’, put (ve, (p A pe), v, (p’ A pt), d) into
Q. where v; and v{ are the states ¢ and ¢’ pointing to,
respectively; p. and p; are the assertions imposed by
the actions of ¢ and t’, respectively; and d is Case 1a,
1b, or 2, based on the relation between {p A p,} and
FES({p' A p}}).

(c)

3. Repeit Step 2.

The idea of the algorithm can also be illustrated by
Figure 5. Initially, every element in Q belongs to Case 2,
which is Figure 5a. When fS[u] and B[u’] are expanded,
the algorithm imposes more restrictions and less scenarios
will satisfy the new restrictions. This makes the circles
in Figure 5a “shrink.” Eventually, the figure will become
either Figure 5b or Figure 5c. If it is Figure 5c, a test sce-
nario is found. Otherwise, the algorithm simply expand
B[u], such that the Ay, circle in Figure 5b shrinks toward
the shaded area and becomes Figure Sc.

Basically, it is an unsolvable problem as to whether
two Turing-equivalent machines generate the same out-
put. However, it is reasonable to assume that each transi-
tion can be finished in a bounded amount of time once it
started, so that a limit can be set to the maximum number
of expansions that can be performed. If the number of ex-
pansions exceeds this limit, and still no test cases can be
found, we simply dictate that such faults are untestable.
Noting that finding a test case for FSM has been proven by
Yannakakis and Lee to be PSPACE-complete [20], we ex-
pect finding a test case for EFSM is at least as hard as the
former. That is, there is unlikely any efficient algorithm
besides exhaustive search. Due to the intractable nature
of this problem, one can only rely on heuristic approaches
to improve the performance. Some useful rules-of-thumb
for the heuristic approach are discussed in Section 4.5.



4.4 Test Case Generation for Multiple Mod-
ules

Estelle allows several modules to be executed in parallel,
communicating with each other through internal interac-
tion points. Therefore, a specification of multiple mod-
ules describes a system containing several communicating
EFSMs. To test such a system, the behavior of the system
is defined as follows:

Definition 5 If there are n modules, M1, Ms, ..., My, in
a specification, and let s; be a state in module M;, then

Bls1, 52, -, 5n] = Bls1) N Bls2] N - - N Blsq]

Definition 6 Let M be a specification that contains mod-
ules My, Ms, ..., M,. Then,

siMl = -UBls1, 52, .0 80]

s 82 Sn

where s; is a state in M.

The behavior of a multiple-module system can be de-
rived in the same way as the behavior of a single EFSM,
except that every module has its own auxiliary variables
T and . It is assumed that different modules do not share
the same variable names. Such a name conflict can easily
be resolved by appending module names to the variable
names. Figure 6 is a simple send-and-receive protocol,
and its behavior is shown as follows:

Two scenarios for the sender and the receiver of the
protocol can be derived as

BIS] = {(ves = send(vd)) A (vd = vrs) A (vTs = ves)A
(vei = msg(vd)) A (V27s = vei)IN
ﬁ[s]'{uc,,ud,un, w3irgwe,}

B[R] = {(vei = msg(vb)) A (vb=var) A(yrr = vei)A
(ver = rec(vb)) A (V277 = ver) N
5[R]I{UCr,Vb,er,uz‘rr,VC.}

Therefore,

B[S, R] = B[S]n B[R] =

{(v7s = ves = send(vd)) A (vd = vrs)}IN

{(v¥rs = msg(vd) = veci = msg(vb) = vrr) A (vb = vre)}N
{(v?*7r = ver = rec(vb))}n

ﬂ{s]l(uc.,ud,wﬁ,Vz‘l'n.ch} ﬂﬂ[R]|{VCerbrV"er2‘rryVC'}

Note that channel c; relates the output of the sender to the
input of the receiver. Since vc; = msg(vd) in the sender
and ve; = msg(vb) in the receiver, vd equals to vb. Note
also that each module has its own variables T and x. The
external events are those 7's which record events on the
channels that connect external IPs. For example, v7, and
V27, are external events since v, = ve,, Vi = ve,,
and ¢, and ¢, are connected to external IPs. The order of
external events is preserved by variables 7’s. For instance,
because v, and v, precede v27, and v?7,, respectively,
and because v2r, = vr, vT, precedes v2T,.

when ug.send(d)
output pg.msg(d)

:cnd* Cs <

Ps —~=
Receiver

when pg.msg(b)

output ug.rec(b)

Figure 6: A simple send-and-receive protocol

The mutants of a multi-module system can be specified
by Estelle, and their behavior can also be described by the
behavior model. Hence, the test case for a multi-module
specification can be generated using the same algorithm
for a single module specification.

Estelle allows for dynamic creating and destroying of
a module instance through statements init and release,
respectively. It can also dynamically create and destroy
a channel between two IPs by issuing connect, discon-
nect, attach, and detach statements. Therefore, an unique
name must be assigned to each newly created object. For
example, if statement “init mv to body” is issued (where
muv is a “module variable” and body is a “module body”),
a variable z in module body “body” should be referred
to as mv.n.z, where n is the number of times mv is ini-
tialized to a module body. If statement “connect p to
q” is issued (where p and ¢ are IPs), a new variable for
the channel between p and ¢ is created with a name such
as Cp,q. With the assurance that each object has its own
name, the algorithm in Section 4.3 can run without a hitch.

4.5 Heuristic Search Methods

Since the conformance of two Turing-equivalent machines
is generally an unsolvable problem, it is unlikely to find a
test case generation algorithm without using an exhaustive
search. However, heuristics can be used to improve the
performance of the test case searching process.

From our experience, there are some guidelines that
can be used to improve the performance of the algorithm
in Section 4 dramatically:

1. Expand those items in queue Q that lead to faulty transi-
tions first.

2. After executing a faulty transition, traverse through those
paths which output the values of the variables that appear
in the faulty transition first.

3. If there are more than one path in the above, traverse the
shortest one first.

Using these guidelines, the algorithm described in Sec-
tion 4.3 can be modified as follows:

1. Let Q be a priority queue.
2. For every element (u, p, u’, p’, ¢) that is to be added to @,
check the following:



(a) If the corresponding path, say P’, of predicate p’
does not contain any faulty transition, set the priority
value of the element to be the length of the short-
est path from the last transition of P’ to a faulty
transition in F'.

(b) If the corresponding path P’ of predicate p’ contains
a faulty transition, set the priority value of the ele-
ment to be the length of the shortest path between
the last transition in P’ and a transition that refers

to any variable used in the the faulty transition.

~

3. To select an element in ¢}, choose the one with the lowest
priority value.

5 Conclusion

In this paper, an automatic test case generation method
for an ISO standard specification language, Estelle, is pre-
sented. The method compares the behavior of a specifi-
cation to the behavior of a given fault model. Based on
their difference, test cases are mechanically derived. Un-
like other conformance testing methods that apply only to
fixed fault models, the proposed method is able to gener-
ate a test case that detects possible implementation errors
specified by a given fault model. Therefore, one can test
those critical faults and obtains confidence in the cover-
age of such faults. When time is critical and resources
are limited, it becomes very important to be able to test
the most critical faults and frequently executed transitions
first.

While most of the existing methods concern only gen-
erating test cases for a single entity, the proposed method
is able to deal with those specifications that contain mul-
tiple modules. Treating channels between two modules as
variables, the method transforms the I/O statements into
assignment statements and derives test cases by using the
same algorithm used to generate test cases for a single
module.

Test case generation has been proven to be at least
PSPACE-hard. To improve the performance of the pro-
posed algorithm, heuristics are introduced. The guidelines
suggested in this paper significantly reduce the number of
states exploited, thereby improving the performance of the
test case generation processes.

In summary, the method proposed in [16] is extended
to generating test cases for Estelle. It is also extended to
dealing with multiple modules. In addition, some heuris-
tics are suggested to improve the performance of the test
case generation process. Currently, a test case generator
for EFSM with given fault models has been developed,
and an extension of it to Estelle is under consideration.
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