A Compositional Approach for Designing Protocols*

Gurdip Singh
Department of Computing and Information Sciences
Kansas State University
Manhattan, KS 66506

Abstract

The complexity of designing distributed protocols has led to compositional techniques for designing and verifying protocols. We propose a technique based on the notion of parallel composition of protocols. It allows the component protocols to share messages and variables. The composite protocol is an interleaved execution of the component protocols with the constraint that they be synchronized at events updating shared variables or sending/receiving shared messages. All invariants of the component protocols are preserved in the composite protocol. The technique allows modular design and verification of protocols. It can be viewed as an inverse of the projection method for verifying protocols.

1 Introduction

Designing and verifying distributed protocols is difficult as they perform several concurrent activities and are required to cope with variable message delays and processor speeds. The complexity of distributed protocols has led to compositional design and verification techniques in which protocols performing the various subfunctions are designed and verified separately and then integrated to form a more complex protocol. Traditional techniques have viewed a process as the unit of modularity [9] [10]. In these techniques, a protocol is viewed as a parallel composition of processes.

Recently, several proposals have been made which use a protocol as the unit of modularity. [5] proposed a framework for sequential composition of protocols,

*This work was supported by NSF Research Initiation Award CCR-9211621.

in which a problem is divided into two or more subproblems which can be performed in sequence. Protocols solving the subproblems are designed and verified independently and then combined sequentially to obtain a protocol for the entire problem. It was shown that under certain conditions, properties of composite protocol can be inferred from those of the component protocols. [4] [12] have also proposed techniques based on sequential composition.

Several techniques based on the notion of parallel composition of protocols have been proposed [3] [8]. In a parallel composition of protocols, the component protocols may execute concurrently (i.e., their execution at a node may be interleaved). [3] proposed a notion of superimposition which is a parallel composition of a basic computation with some control protocol. In this case, the control protocol observes the events of the basic protocol and constrains its execution. For example, a deadlock avoidance protocol can be superimposed on a basic computation (which will control the basic computation to prevent deadlocks). [8] proposed a methodology of constructing a multi-function protocol by combining the protocols performing the various functions. The composition involves imposing operational constraints on the execution of the protocols solving the subproblems. Both techniques can be used to add functionality to a protocol. The technique of using protocols as building blocks to design more complex protocols is a promising one. It facilitates modular design and verification by allowing a designer to focus on one aspect at a time. The techniques discussed above, however, assume that the component protocols do not share messages or update shared variables (they do allow read-only access to variables of the other protocols).

In this paper, we propose a technique which is based
on the notion of parallel composition of protocols. It allows the component protocols to share variables as well as messages. Informally, our composition principle allows an interleaved execution of the component protocols but requires that they be synchronized at events which update shared variables or send/receive common messages. Our methodology involves the following three steps (which are similar to those in [5]):

- In the first step, a designer divides the functionality of a protocol into subfunctions.
- In the second step, a protocol for each subfunction is obtained.
- The third step involves combining the protocols to obtain a protocol for the entire problem. For this purpose, we give an algorithm for obtaining the composite protocol from the component protocols.

We show that all invariants of the component protocols are preserved in the composite protocol. In [6], it was observed that in many multi-function protocols, modules performing the various functions may interact with each other, and share messages and update common variables. This sharing poses a problem in decompositional analysis. To deal with this problem, they proposed a projection method to verify a protocol. We show that our technique can be viewed as an inverse of the projection method. [7] presented another version of an inverse of the projection method based on event refinements. [11] presented a technique based on parallel composition which allows shared variables (but not shared messages). This technique, however, requires explicit specification of synchronization points and all invariants of the component protocols may not be preserved in the composite protocol.

We demonstrate the applicability of our technique by designing a leader election protocol and a data transfer protocol:

- For the leader election problem, we first design a two-process leader election protocol and verify it. We then obtain a protocol for \(N \)-process leader election by combining two-process leader election protocols, one for each pair of processes. A similar strategy can be used to extend a two-process mutual exclusion protocol to an \(N \)-process mutual exclusion protocol.

- To obtain a data transfer protocol with one sender \(i \) and two receivers \(j \) and \(k \), we first design two data transfer protocols, one for sending a sequence of data items from \(i \) to \(j \) and the other for sending the same sequence of data items from \(i \) to \(k \). We then combine these protocols to obtain the final protocol.

We also generalize the principle so that it takes two parameters, \(V \) and \(M \), where \(V \) is a subset of shared variables and \(M \) is a subset of shared messages. In this case, we require that the component protocols be synchronized only at those events which update variables in \(V \) or send/receive messages in \(M \). This is motivated by the fact that in certain compositions, the composite protocol desired might require asynchronous updates to some shared variables (synchronizing updates to a subset of shared variables, however, must be sufficient to preserve the desired set of invariants). For example, we consider two token based mutual exclusion protocols, both of which assume that nodes are arranged logically in a ring. However, request propagation mechanism for a token is different in the two protocols. We combine these protocols to obtain a protocol with a more efficient request propagation mechanism (this protocol requires asynchronous updates to a shared variable). However, the subset of shared variables and messages at which the protocols are synchronized is sufficient to ensure the mutual exclusion property.

This paper is organized as follows. In the next section, we present a formalism to specify protocols and discuss some examples. In Section 3, we present our composition principle and describes the properties of the composite protocols. In Section 4, we discuss some extensions of the composition principle. Section 5 concludes the paper.

2 Model

A distributed protocol, \(P \), is a set of processes \([P_1 || P_2 || \cdots || P_n]\). Each \(P_i \) is in the following normal form \([1]\):

\[
[e_{i=1}^n \text{en}(a_i) \rightarrow a_i : s_i]
\]

where \(a_i \) is the label of the action, \(\text{en}(a_i) \) is the enabling condition (which is a boolean expression) and \(s_i \) is the computation associated with the action. A
communication channel from \(P_i \) to \(P_j \) is modeled as a sequence \(\text{ch}_{i,j} \) of messages. The statement 'send \(M(\text{arg.list}) \) to \(j \)' executed by \(P_i \) causes \(M(\text{arg.list}) \) to be appended to the end of \(\text{ch}_{i,j} \), and the statement 'receive \(M(\text{para.list}) \) from \(f \)' executed by \(P_j \) removes the message at the head of \(\text{ch}_{i,j} \) and stores the contents of the message in \(\text{para.list} \).

Let \(\text{variable}(P_i) \) denote the set of variables which appear in \(P_i \) (except the variables modeling the channels) and \(\text{variable}(P) = \text{variable}(P_i) \cup \cdots \cup \text{variable}(P_n) \). Let \(\text{mess}(P_i) \) denote the set of messages sent or received by \(P_i \) and \(\text{mess}(P) = \text{mess}(P_i) \cup \cdots \cup \text{mess}(P_n) \). We assume that messages with the same name but sent over different links are different. For this purpose, we will assume that each message is indexed with the channel over which it is sent (for clarity, we may omit the subscripts when they are clear from context).

The state of \(P_i \) is defined by the values of variables in \(\text{variable}(P_i) \). The state of a channel from \(P_i \) to \(P_j \) is the value of \(\text{ch}_{i,j} \). The state of the system is a tuple \((s_1, \ldots, s_n, c_1, \ldots, c_k)\), where \(s_i \)'s represent the states of the processes and \(c_j \)'s represent the states of the channels. An event is specified by an action and its enabling condition. An event occurs when the computation associated with its action is executed. An execution of a protocol is a maximal sequence, \(g_0 \rightarrow s_0, g_1 \rightarrow s_1, \ldots \), such that \(g_0 \) is the initial state, \(s_1 \) is enabled in state \(g_1 \) and the execution of the computation associated with \(s_1 \) transforms state \(g_1 \) to \(g_{i+1} \). We say that \(g \) is reachable from \(g' \) if there exists a sequence of events which takes the system from state \(g' \) to \(g \). An assertion \(I \) is an invariant if \(I \) is true in the initial state and in all states reachable from the initial state.

2.1 Protocol Examples

In this section, we will discuss some protocols which we will use to illustrate the composition principle. We first consider a protocol for leader election. The purpose of this protocol is to distinguish exactly one process as the leader. Figure 1 gives a leader election protocol, \(LD^{(i,j)} \), for two processes \(i \) and \(j \) (the protocol is given for process \(i \); the protocol at process \(j \) is similar). We assume that initially \(\text{leader}_i = \text{sent}_{i,j} = \text{win}_{i,j} = \text{false} \) and \(\text{ch}_{i,j} = \lambda \). To elect itself the leader, each process sends a message containing its identity to the other process. On receiving this message, a process compares its identity with the one received in the message. An \(\text{ack} \) message is sent if the identity received in the message is greater. The process with the larger identity becomes the leader. Process \(i \) sets \(\text{leader}_i \) to true if it is elected the leader. Assuming that \(id_i \neq id_j \), we can show that \((\text{leader}_i \Rightarrow \neg\text{leader}_j) \land (\text{leader}_j \Rightarrow \neg\text{leader}_i) \) is an invariant of the protocol.

We next consider a data transfer protocol, \(D^{(i,j)} \), with process \(i \) as the sender and process \(j \) as the receiver. Process \(i \) has a sequence of data items stored in an array \(sdata[1..maz] \) which it wants to send to \(j \). Process \(j \) stores the items received in an array \(rdata[1..maz] \). Figure 2 gives a data transfer protocol. Initially, \(sent = rec = 0 \), \(\text{ack}.rec = 0 \) and \(\text{ch}_{i,j} = \text{ch}_{j,i} = \lambda \). Each data item received by \(D^{(i,j)} \) is acknowledged. \(D^{(i,j)} \) can send the next data item only if it has received an \(\text{ack} \) for the previous data item sent. The protocol \(D^{(i,k)} \) is similar (with \(k \) as the receiver instead of \(j \)). Assuming that channels do not lose or duplicate messages, we can show that the following are invariants of \(D^{(i,j)} \):

\[
\begin{align*}
11: & \quad 0 < x < rec \Rightarrow rdata[x] = sdata[x] \\
12: & \quad sent_1 - 1 \leq rec \leq sent
\end{align*}
\]

3 A Compositional Approach

In this section, we will present our composition principle. We will consider composition of two compo-
Figure 2: Data Transfer Protocol

The message data is sent in both protocols, it is sent over different links and therefore, is not considered a common message. Let \(shared(P, Q) \) denote the set of actions in \(P \) and \(Q \) which update a variable in \(variable(P) \cap variable(Q) \) or send a message in \(mess(P) \cap mess(Q) \). For example, \(shared(LD^{(1,2)}, LD^{(1,3)}) = \{ \text{Elect}_{1,2}, \text{Elect}_{1,3} \} \) and \(shared(D^{(1,2)}, D^{(1,3)}) = \{ \text{Send}_{i,i}, \text{Send}_{k,k} \} \). We say that \(P \) and \(Q \) are matching protocols if for each action \(a \) in \(shared(P, Q) \) which belongs to \(P \) (\(Q \)), there exists a distinct matching action in \(Q \) (\(P \)) (thus, the matching function must be one-to-one). For example, protocols \(D^{(1,2)} \) and \(D^{(1,3)} \) are matching since \(shared(D^{(1,2)}, D^{(1,3)}) = \{ \text{Send}_{i,i}, \text{Send}_{k,k} \} \) and \((\text{Send}_{i,i}, \text{Send}_{k,k}) \) is a matching pair of actions.

We will now discuss an algorithm for obtaining \(R \). Let \(P \) and \(Q \) be matching protocols. The set of guarded commands of \(R_i \) is obtained as follows:

- If \(a : \langle s > \notin shared(P, Q) \) then \(en(a) \rightarrow a : \langle s > \) is in \(R_i \). This rule reflects condition A1 (that is, the component protocols must execute asynchronously).
- Let \(a : \langle s; s_a > \) be an action in \(shared(P, Q) \) and \(b : \langle s; s_b > \) be the matching action. Then \(en(c) \rightarrow c : \langle s; s_a; s_b > \) is in \(R_i \), where \(c \) is a new label and \(en(c) = en(a) \land en(b) \). In this case, we say that \(c \) is obtained by fusing actions \(a \) and \(b \). This rule reflects condition A2 which indicates that the execution of the protocols must be synchronized at matching actions.

Using the methodology described above, we will obtain a three-process leader election protocol using protocol \(LD^{(1,2)} \) of Figure 1. We will first compose \(LD^{(1,2)} \) and \(LD^{(1,3)} \). We know that \(variable(LD^{(1,2)}) \cap variable(LD^{(1,3)}) = \{ \text{leader}_{1,2}, \text{leader}_{1,3} \} \) and \(mess(LD^{(1,2)}) \cap mess(LD^{(1,3)}) = \{ \} \). From the specification of the protocol, we have that \(shared(LD^{(1,2)}, LD^{(1,3)}) = \{ \text{Elect}_{1,2}, \text{Elect}_{1,3} \} \) and \(\text{Elect}_{1,2} \) and \(\text{Elect}_{1,3} \) are matching. Thus, the protocols are matching and we can combine them to obtain \(Comp(LD^{(1,2)}, LD^{(1,3)}) \). We next observe that \(Comp(LD^{(1,2)}, LD^{(1,3)}) \) and \(LD^{(2,3)} \) share the variables in the set \(\{ \text{leader}_{2,3}, \text{leader}_{3} \} \) and are matching. Hence, we can combine these protocols to obtain the final protocol, \(LD^{(1,2,3)} \), which is shown in Figure 3 (the protocol for processes 2 and 3 is similar to the one shown in the figure).
We will now combine the data transfer protocols $D[i,j]$ and $D[i,k]$ to obtain a protocol $D[i,j,k]$ in which i sends the same sequence of data items to both j and k. $D[i,j]$ and $D[i,k]$ share the variables \{sent, sdata, max\} but no messages. It can be seen that they are matching. The composite protocol is shown in Figure 4. $D[i,j,k]$ and $D[i,j]$ are identical to $D[i,j]$ and $D[i,k]$ respectively and are not shown in Figure 4.

The technique can also be used, for example, to extend a 2-process mutual exclusion protocol to an N-process mutual exclusion protocol or a 2-process synchronizer [2] to an N-process synchronizer. In many multi-function protocols, it is the case that protocols performing the subfunctions specify different constraints under which an action must be performed in order to ensure certain properties. By synchronizing the action in different protocols, we ensure that the action is performed when constraints imposed by each individual protocol are satisfied, thus preserving the properties of each protocol.

3.1 Properties of the Composite Protocols

In this section, we present results which enable us to infer properties of the composite protocol from those of the component protocols.

Theorem 3.1 Let $R = \text{Comp}(P, Q)$. If I is an invariant of P (Q) which refers only to variables in $\text{variable}(P)$ (variable(Q)) then I is an invariant of R.

Proof of Theorem 3.1: We show that for each execution of R, there exists a corresponding execution of P. From this, we can conclude that if I is an invariant of P then it is an invariant of R. The proof is given in the full paper. □

[6] proposed a projection technique to verify invariant properties of a protocol. For this purpose, a set V of variables and a set M of messages is selected (M is actually the set of messages whose receiving causes an update to variables in V), and the protocol is projected to obtain an image protocol using these sets (all actions updating variables in V or sending/receiving messages in M are retained; rest are mapped to null actions). It was shown that if I is an invariant of the image protocol then I is an invariant of the orig-
inal protocol. It can be shown that the projection of \(\text{Comp}(P, Q) \) on to the set variable \((P)\) and means \((P)\) is the protocol \(P \) except that some actions may have strengthened enabling conditions (because of the fusion of actions). Thus, the set of executions of the image protocol is a subset of the set of executions of \(P \).

Since \((\text{leader}_1 \Rightarrow \neg \text{leader}_2) \land (\text{leader}_2 \Rightarrow \neg \text{leader}_1)\) is an invariant of \(LD^{(1,2)} \), from Theorem 3.1, it is an invariant of \(\text{Comp}(LD^{(1,2)}, LD^{(1,3)}) \). Similarly, from invariants of \(LD^{(1,3)} \) and \(LD^{(2,3)} \), we can deduce that \(\forall i, j, k \in \{1, 2, 3\} \) \(i \neq j \neq k \) \((\text{leader}_i \Rightarrow \neg (\text{leader}_j \lor \text{leader}_k)) \) is an invariant of \(LD^{(1,2,3)} \). We can also infer that invariants \(I1 \) and \(I2 \) of \(D^{(i,j)} \) will be preserved in \(D^{(i,j,k)} \).

4 Extensions to the Composition Principle

In this section, we propose an extension to the composition principle discussed above. In composition of some protocols, we may be interested in synchronizing the execution of the component protocols at a subset of shared actions. For example, consider two mutual exclusion protocols, \(\text{MUT1} \) and \(\text{MUT2} \), each involving sites arranged logically in a ring. In both protocols, there exists a token which circulates in the ring in the clockwise direction. A process can enter the critical section only if it possesses the token. The propagation of requests for token is different in \(\text{MUT1} \) and \(\text{MUT2} \). In \(\text{MUT1} \), if \(i \) needs the token, it sends a request directly to all other processes (we assume that processes can also directly communicate with each other). On receiving this request, any other process \(j \) sets a variable \(\text{req}_j \) to true. If \(\text{req}_j \) is true and \(j \) holds the token, it sends the token to its left neighbor. In \(\text{MUT2} \), if \(i \) needs a token, it sends a request to its right neighbor in the ring. On receiving a request, \(j \) sets \(\text{req}_j \) to true. If \(\text{req}_j \) is true and \(j \) does not hold the token, it sends a request to its right neighbor. Thus, the request travels counterclockwise in the ring until it reaches a process which holds the token. If \(\text{req}_j \) is true and \(j \) holds a token, it sends the token to its right neighbor. In \(\text{MUT1} \), requests are propagated directly while in \(\text{MUT2} \), requests are propagated counterclockwise along the ring. Figure 5 and Figure 6 shows \(\text{MUT1} \) and \(\text{MUT2} \) respectively for three sites with indices 0, 1, and 2. We assume that \(i \) has \(i + 1 \) (\(i - 1 \)) as the left (right) neighbor (operations are assumed modulo 2). In both protocols, it is assumed that when process \(i \) wants to enter the critical section, \(\text{ext}_i \) is set to true. On entering the critical section, it sets \(\text{ext}_i \) to false and \(\text{in}_i \) to true. On exiting the critical section, it sets \(\text{in}_i \) to false. \(\text{hold}_i \) is true indicates that \(i \) has the token and \(\text{sent}_i \) is true in \(\text{MUT1} \) (in \(\text{MUT2} \)) implies that \(i \) has sent a request for which it has not received a response. Setting \(\text{ext}_i \) to true and \(\text{in}_i \) to false are done external to the protocol (by the protocol using the mutual exclusion protocol) and are not shown in the figures.

We may want to obtain a protocol in which requests are propagated as specified by both protocols. Thus, \(\text{req}_i \) is set to true on receiving the request along any one of the paths: either directly or along the ring (thus, propagation of request will be faster since \(i \) can receive it via either paths). Even though \(\text{req}_i \) is a shared variable, we do not want to synchronize the assignments to \(\text{req}_i \) since that will involve waiting for the request to arrive via both paths before \(\text{req}_i \) is set to true. Also, we find that to preserve the mutual exclusion property, it is not necessary to perform this synchronization. To allow such compositions, we modify the composition rule as described in the following.
\[\text{MUT}_2:\]
\[
\begin{align*}
\text{Enter}_2 &< \text{in}_i := \text{true}; \text{ext}_i := \text{false} > \\
\text{exit} \land \neg \text{hold}_i &< \text{req}_i := \text{true} > \\
\text{request} &< \text{first} (\text{ch}_{i+1}, i) > \\
\text{Rec}_2 &< \text{receive request from } i+1; \text{req}_i := \text{true} > \\
\text{req}_i \land \neg \text{sent}_i &< \text{send request to } i-1; \text{sent}_i := \text{true} > \\
\text{token} &< \text{first} (\text{ch}_{i-1}, i) > \\
\text{Rtoken}_2 &< \text{receive token from } i-1; \text{hold}_i := \text{true} > \\
\text{req}_i \land \text{hold}_i \land \neg \text{in}_i \land \neg \text{ext}_i &< \text{Stoken}_2 < \text{send token to } i+1; \text{hold}_i := \text{false}; \text{req}_i := \text{false}; \text{sent}_i := \text{false} >
\end{align*}
\]

Figure 6: Protocol \text{MUT}_2

Let \text{shared}(P, Q, V, M) denote the set of actions in \(P \) and \(Q \) which update a variable in \(V \) or send/receive a message in \(M \). Actions \(a < s; s_1 > \) and \(b < s; s_2 > \) are matching over \((V, M) \) if \(s_1 \) and \(s_2 \) do not update a variable in \(V \) or send a message in \(M \). We say that \(P \) and \(Q \) are matching protocols over \((V, M) \) if for each action \(a \) in \text{shared}(P, Q, V, M) which belongs to \(P \) (\(Q \)), there exists a distinct action \(b \) in \(Q \) (\(P \)) such that \(a \) and \(b \) match over \((V, M) \). The composite protocol \(R \), denoted by \text{Comp}(P, Q, V, M), is obtained as follows:

1. If \(a < s > \notin \text{shared}(P, Q, V, M) \) then \(\text{en}(a) \rightarrow a < s > \in R_i \).
2. Let \(a < s; s_i > \) be an action in \text{shared}(P, Q, V, M) and \(b < s; s_j > \) be the matching action. Then \(\text{en}(c) \rightarrow c < s; s_a; s_b > \) is in \(R_i \), where \(c \) is a new label and \(\text{en}(c) = \text{en}(a) \land \text{en}(b) \).

Let \(V = \{ \text{ext}_0, \text{ext}_1, \text{ext}_2, \text{in}_0, \text{in}_1, \text{in}_2, \text{hold}_0, \text{hold}_1, \text{hold}_2 \} \) and \(M = \{ \text{token}_0, \text{token}_1, \text{token}_2 \} \) (messages are indexed by the link over which they are sent). Then, \text{MUT}_1 and \text{MUT}_2 match over \((V, M) \). Figure 7 gives the composite protocol, \(\text{MUT}_3 = \text{Comp}(\text{MUT}_1, \text{MUT}_2, V, M) \).

\[\text{MUT}_3:\]
\[
\begin{align*}
\text{Enter}_3 &< \text{in}_i := \text{true}; \text{ext}_i := \text{false} > \\
\text{exit} \land \neg \text{hold}_i &< \text{req}_i := \text{true} > \\
\text{request} &< \text{first} (\text{ch}_{i+1}, i) > \\
\text{Rec}_3 &< \text{receive request from } i+1; \text{req}_i := \text{true} > \\
\text{req}_i \land \neg \text{sent}_i &< \text{send request to } i-1; \text{sent}_i := \text{true} > \\
\text{token} &< \text{first} (\text{ch}_{i-1}, i) > \\
\text{Rtoken}_3 &< \text{receive token from } i-1; \text{hold}_i := \text{true} > \\
\text{req}_i \land \text{hold}_i \land \neg \text{in}_i \land \neg \text{ext}_i &< \text{Stoken}_3 < \text{send token to } i+1; \text{hold}_i := \text{false}; \text{req}_i := \text{false}; \text{sent}_i := \text{false} >
\end{align*}
\]

Figure 7: Protocol \text{MUT}_3

\text{Comp}(\text{MUT}_1, \text{MUT}_2, V, M).

Let \text{var}(I) and \text{mess}(I) denote the set of variables and messages respectively sufficient to verify \(I \) (i.e., they provide sufficient resolution) using the projection technique of [6]. For example, to verify that \(\text{in}_i \Rightarrow \neg (\text{in}_{i-1} \lor \text{in}_{i+1}) \) is an invariant of \text{MUT}_1, it is sufficient to project the protocol over the set \(V = \{ \text{in}_0, \text{in}_1, \text{in}_2 ; \text{hold}_0, \text{hold}_1, \text{hold}_2 \} \) and \(M = \{ \text{token}_0, \text{token}_1, \text{token}_2 \} \).

\text{Theorem 4.1} Let \(R = \text{Comp}(P, Q, V, M) \) and \(I \) be an invariant of \(P \). If \(\text{var}(I) \subseteq V \) and \(\text{mess}(I) \subseteq M \) then \(I \) is an invariant of \(R \).

The proof of this theorem is a minor modification of the proof of \text{Theorem 3.1}. From \text{Theorem 4.1}, we can infer that the invariant \(\text{in}_i \Rightarrow \neg (\text{in}_{i-1} \lor \text{in}_{i+1}) \) of the component protocols is preserved in the com-
posite protocol.

5 Conclusion and Discussion

In this paper, we have presented a technique for parallel composition of protocols. The technique allows protocols to share messages and variables. We first considered the case where the component protocols are synchronized at all events which update shared variables or send/receive shared messages. In this case, all invariants of the component protocols are preserved in the composite protocol. We then generalized the technique so that component protocols are synchronized only at those events which update variables in V or send/receive messages in the set M. In this case, not all invariants of the component protocols may be preserved in the composite protocol.

We have discussed inference rules only for invariants. There are other safety and liveness properties which are of interest. In [6], it was shown that if all actions of the image protocol are well-formed then any safety or liveness property of the image protocol is preserved in the original protocol. Future work involves adapting this technique to derive sufficient conditions to infer safety and liveness properties of R from those of P and Q (as discussed above, the image protocol obtained by projecting R on to the sets variables(P) and mess(P) is protocol P with some of its enabling conditions strengthened).

For component protocols satisfying certain properties, we have obtained a sufficient condition for the composite protocol to be deadlock free given that the component protocols are deadlock-free (the condition only requires reachability analysis of the component protocols). Future works involves generalizing this result to a larger class of component protocols and determining the relationship between this sufficient condition and well-formedness of the actions.

References

